Cavity-Mediated Collective Resonant Suppression of Local Molecular Vibrations
- URL: http://arxiv.org/abs/2502.10917v2
- Date: Sun, 13 Apr 2025 01:54:52 GMT
- Title: Cavity-Mediated Collective Resonant Suppression of Local Molecular Vibrations
- Authors: Vasil Rokaj, Ilia Tutunnikov, H. R. Sadeghpour,
- Abstract summary: Recent advances in polaritonic chemistry suggest that chemical reactions can be controlled via collective vibrational strong coupling (VSC) in a cavity.<n>We demonstrate that the collective vibrations of a molecular ensemble under VSC execute a beating with a period inversely proportional to the collective vacuum Rabi splitting.<n>This collective beating is imprinted on the local dynamics and resonantly suppresses individual molecular vibrations when a fraction of molecules are vibrationally excited.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advances in polaritonic chemistry suggest that chemical reactions can be controlled via collective vibrational strong coupling (VSC) in a cavity. In this fully analytical work, we demonstrate that the collective vibrations of a molecular ensemble under VSC execute a beating with a period inversely proportional to the collective vacuum Rabi splitting. Significantly, this collective beating is imprinted on the local dynamics and resonantly suppresses individual molecular vibrations when a fraction of molecules are vibrationally excited, as in activated complexes formed in chemical reactions. This emergent beating occurs on significantly longer time scales than the individual molecular vibration or the cavity field oscillation period, peaking at the cavity-molecule resonance, consistent with polaritonic chemistry experiments. The cavity mediates an energy exchange between excited and ground-state molecules, affecting the dynamics of the entire ensemble. These findings suggest that the dynamics in polaritonic chemical reactions may not be in full equilibrium. In the ultra-strong coupling regime, we find that the local vibrations are modified by the cavity even at short time scales. Our analytical model offers insights into how collective VSC can dampen local molecular vibrations at resonance, potentially altering chemical reactivity.
Related papers
- Steering Non-Equilibrium Molecular Dynamics in Optical Cavities [11.581137921729066]
We study cooperative vibrational strong coupling in an open quantum system.
Our work offers a pathway to steer stability of chemical bonds for chemical reactivity under cooperative vibrational strong coupling.
arXiv Detail & Related papers (2024-12-10T15:28:00Z) - Flipping electric dipole in the vibrational wave packet dynamics of
carbon monoxide [0.0]
Recently Rydberg atom-ion bound states have been observed using a high resolution ion microscope.
We investigate whether a similar behavior can also occur for ground state diatomic molecules.
arXiv Detail & Related papers (2024-03-06T21:32:22Z) - Can increasing the size and flexibility of a molecule reduce decoherence and prolong charge migration? [0.0]
Correlation between nuclear and electron motions dissipates the electronic coherence in only a few femtoseconds.<n>We find that extending the carbon skeleton in propynal analogs slows down decoherence and prolongs charge migration.
arXiv Detail & Related papers (2024-01-03T22:46:40Z) - Exploring the impact of vibrational cavity coupling strength on
ultrafast CN + $c$-C$_6$H$_{12}$ reaction dynamics [45.46706627196389]
We study the ultrafast dynamics of CN radicals interacting with a cyclohexane and chloroform.
Reaction rates remain unchanged for all extracavity, on resonance, and off-resonance cavity coupling conditions.
arXiv Detail & Related papers (2023-10-29T19:46:42Z) - Probing dynamics of a two-dimensional dipolar spin ensemble using single
qubit sensor [62.997667081978825]
We experimentally investigate individual spin dynamics in a two-dimensional ensemble of electron spins on the surface of a diamond crystal.
We show that this anomalously slow relaxation rate is due to the presence of strong dynamical disorder.
Our work paves the way towards microscopic study and control of quantum thermalization in strongly interacting disordered spin ensembles.
arXiv Detail & Related papers (2022-07-21T18:00:17Z) - Chemical reactivity under collective vibrational strong coupling [0.0]
We study unimolecular dissociation reactions of many molecules collectively interacting with an infrared cavity mode.
We find that the reaction rate can slow down by increasing the number of aligned molecules if the cavity mode is resonant with a vibrational frequency of the molecules.
arXiv Detail & Related papers (2022-06-17T00:56:12Z) - Dynamics of Transmon Ionization [94.70553167084388]
We numerically explore the dynamics of a driven transmon-resonator system under strong and nearly resonant measurement drives.
We find clear signatures of transmon ionization where the qubit escapes out of its cosine potential.
arXiv Detail & Related papers (2022-03-21T18:00:15Z) - Entanglement and correlations in fast collective neutrino flavor
oscillations [68.8204255655161]
Collective neutrino oscillations play a crucial role in transporting lepton flavor in astrophysical settings.
We study the full out-of-equilibrium flavor dynamics in simple multi-angle geometries displaying fast oscillations.
We present evidence that these fast collective modes are generated by the same dynamical phase transition.
arXiv Detail & Related papers (2022-03-05T17:00:06Z) - Cavity-modified unimolecular dissociation reactions via intramolecular
vibrational energy redistribution [0.0]
We show that an optical cavity resonantly coupled to particular anharmonic vibrational modes can interfere with unimolecular dissociation reaction rates.
In particular, when the cavity is initially empty, the dissociation rate decreases, while when the cavity is initially hotter than the molecule, the cavity can instead accelerate the reaction rate.
arXiv Detail & Related papers (2021-09-09T14:37:39Z) - Molecular polaritonics in dense mesoscopic disordered ensembles [0.3058685580689604]
We study the dependence of the vacuum Rabi splitting (VRS) on frequency disorder, vibrations, near-field effects and density in molecular polaritonics.
arXiv Detail & Related papers (2020-10-14T15:16:08Z) - Collective spontaneous emission of two entangled atoms near an
oscillating mirror [50.591267188664666]
We consider the cooperative spontaneous emission of a system of two identical atoms, interacting with the electromagnetic field in the vacuum state.
Using time-dependent theory, we investigate the spectrum of the radiation emitted by the two-atom system.
We show that it is modulated in time, and that the presence of the oscillating mirror can enhance or inhibit the decay rate.
arXiv Detail & Related papers (2020-10-07T06:48:20Z) - Effects of Conical Intersections on Hyperfine Quenching of Hydroxyl OH
in collision with an ultracold Sr atom [62.60678272919008]
We report on ultracold collision dynamics of the hydroxyl free-radical OH with Sr atoms leading to quenching of OH hyperfine states.
Our quantum-mechanical calculations of this process reveal that quenching is efficient due to anomalous molecular dynamics in the vicinity of the conical intersection.
arXiv Detail & Related papers (2020-06-26T23:27:25Z) - Optically pumped spin polarization as a probe of many-body
thermalization [50.591267188664666]
We study the spin diffusion dynamics of 13C in diamond, which we dynamically polarize at room temperature via optical spin pumping of engineered color centers.
We find good thermal contact throughout the nuclear spin bath, virtually independent of the hyperfine coupling strength.
Our results open intriguing opportunities to study the onset of thermalization in a system by controlling the internal interactions within the bath.
arXiv Detail & Related papers (2020-05-01T23:16:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.