論文の概要: Evolving Hate Speech Online: An Adaptive Framework for Detection and Mitigation
- arxiv url: http://arxiv.org/abs/2502.10921v1
- Date: Sat, 15 Feb 2025 22:46:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-18 14:10:07.062090
- Title: Evolving Hate Speech Online: An Adaptive Framework for Detection and Mitigation
- Title(参考訳): ヘイトスピーチのオンライン化: 検出と緩和のための適応的フレームワーク
- Authors: Shiza Ali, Gianluca Stringhini,
- Abstract要約: 本稿では,単語埋め込みを用いて語彙を更新し,新たなスラリーや新しい言語パターンに適応するハイブリッドモデルを開発する適応的手法を提案する。
我々のハイブリッドモデルは、BERTとレキシコンベースの技術を組み合わせて、ほとんどの最先端データセットに対して95%の精度を達成する。
- 参考スコア(独自算出の注目度): 15.7562890371478
- License:
- Abstract: The proliferation of social media platforms has led to an increase in the spread of hate speech, particularly targeting vulnerable communities. Unfortunately, existing methods for automatically identifying and blocking toxic language rely on pre-constructed lexicons, making them reactive rather than adaptive. As such, these approaches become less effective over time, especially when new communities are targeted with slurs not included in the original datasets. To address this issue, we present an adaptive approach that uses word embeddings to update lexicons and develop a hybrid model that adjusts to emerging slurs and new linguistic patterns. This approach can effectively detect toxic language, including intentional spelling mistakes employed by aggressors to avoid detection. Our hybrid model, which combines BERT with lexicon-based techniques, achieves an accuracy of 95% for most state-of-the-art datasets. Our work has significant implications for creating safer online environments by improving the detection of toxic content and proactively updating the lexicon. Content Warning: This paper contains examples of hate speech that may be triggering.
- Abstract(参考訳): ソーシャルメディアプラットフォームの普及はヘイトスピーチの拡散を招き、特に脆弱なコミュニティをターゲットにしている。
残念ながら、有害な言語を自動的に識別し、ブロックする既存の方法は、事前構築されたレキシコンに依存しており、適応性ではなく反応性がある。
そのため、これらのアプローチは時間が経つにつれて効果が低下し、特に、新しいコミュニティが元のデータセットに含まれていないスラーをターゲットとする場合はなおさらである。
この問題に対処するために,単語埋め込みを用いて語彙を更新し,新たなスラリーや新しい言語パターンに適応するハイブリッドモデルを開発する適応的手法を提案する。
このアプローチは、攻撃者が検出を避けるために意図的なスペルミスを含む、有害な言語を効果的に検出することができる。
我々のハイブリッドモデルは、BERTとレキシコンベースの技術を組み合わせて、ほとんどの最先端データセットに対して95%の精度を達成する。
本研究は,毒性物質の検出を改善し,レキシコンを積極的に更新することによって,より安全なオンライン環境を構築する上で重要な意味を持つ。
コンテンツ警告: この論文は、引き金になっているかもしれないヘイトスピーチの例を含む。
関連論文リスト
- ToXCL: A Unified Framework for Toxic Speech Detection and Explanation [3.803993344850168]
ToXCLは暗黙の有毒音声の検出と説明のための統合されたフレームワークである。
ToXCLは、新しい最先端の有効性を実現し、ベースラインを大幅に上回る。
論文 参考訳(メタデータ) (2024-03-25T12:21:38Z) - Hate Speech and Offensive Language Detection using an Emotion-aware
Shared Encoder [1.8734449181723825]
ヘイトスピーチと攻撃的言語検出に関する既存の研究は、事前学習されたトランスフォーマーモデルに基づいて有望な結果をもたらす。
本稿では,他コーパスから抽出した外的感情特徴を組み合わせたマルチタスク共同学習手法を提案する。
以上の結果から,感情的な知識が,データセット間のヘイトスピーチや攻撃的言語をより確実に識別する上で有効であることが示唆された。
論文 参考訳(メタデータ) (2023-02-17T09:31:06Z) - Countering Malicious Content Moderation Evasion in Online Social
Networks: Simulation and Detection of Word Camouflage [64.78260098263489]
ツイストとカモフラージュキーワードは、プラットフォームコンテンツモデレーションシステムを回避する最もよく使われるテクニックである。
本稿では,コンテンツ回避の新たな手法をシミュレートし,検出する多言語ツールを開発することにより,悪意ある情報に対する対処に大きく貢献する。
論文 参考訳(メタデータ) (2022-12-27T16:08:49Z) - Language Detoxification with Attribute-Discriminative Latent Space [59.167432249229584]
トランスフォーマーベースの言語モデル(LM)は、自然言語理解タスクにおいて印象的な結果を得た。
また、侮辱、脅し、暴言などの有毒なテキストを生成でき、現実世界の応用を制限できる。
本稿では,属性識別型潜在空間を用いた効果的かつ効率的な言語解毒法を提案する。
論文 参考訳(メタデータ) (2022-10-19T06:54:42Z) - Leveraging Dependency Grammar for Fine-Grained Offensive Language
Detection using Graph Convolutional Networks [0.5457150493905063]
我々はTwitterにおける攻撃的言語検出の問題に対処する。
文の係り受け解析木に構文的特徴を統合するSyLSTMという新しい手法を提案する。
その結果,提案手法は,パラメータの桁数を桁違いに減らして,最先端のBERTモデルよりも大幅に優れていた。
論文 参考訳(メタデータ) (2022-05-26T05:27:50Z) - A New Generation of Perspective API: Efficient Multilingual
Character-level Transformers [66.9176610388952]
Google JigsawのAspective APIの次期バージョンの基礎を提示する。
このアプローチの中心は、単一の多言語トークンフリーなCharformerモデルである。
静的な語彙を強制することで、さまざまな設定で柔軟性が得られます。
論文 参考訳(メタデータ) (2022-02-22T20:55:31Z) - Addressing the Challenges of Cross-Lingual Hate Speech Detection [115.1352779982269]
本稿では,低リソース言語におけるヘイトスピーチ検出を支援するために,言語間移動学習に着目した。
言語間単語の埋め込みを利用して、ソース言語上でニューラルネットワークシステムをトレーニングし、ターゲット言語に適用します。
本研究では,ヘイトスピーチデータセットのラベル不均衡の問題について検討する。なぜなら,ヘイトサンプルと比較して非ヘイトサンプルの比率が高いことがモデル性能の低下につながることが多いからだ。
論文 参考訳(メタデータ) (2022-01-15T20:48:14Z) - Mitigating Biases in Toxic Language Detection through Invariant
Rationalization [70.36701068616367]
性別、人種、方言などの属性に対するバイアスは、毒性検出のためのほとんどのトレーニングデータセットに存在する。
本稿では,論理生成器と予測器から構成されるゲーム理論フレームワークである不変合理化(InvRat)を用いて,特定の構文パターンの素早い相関を除外することを提案する。
本手法は, 語彙属性と方言属性の両方において, 従来のデバイアス法よりも低い偽陽性率を示す。
論文 参考訳(メタデータ) (2021-06-14T08:49:52Z) - Leveraging cross-platform data to improve automated hate speech
detection [0.0]
ヘイトスピーチ検出のための既存のアプローチは、単一のソーシャルメディアプラットフォームを独立して重視している。
本稿では,異なるプラットフォームからの複数のデータセットと分類モデルを活用するヘイトスピーチを検出するための,クロスプラットフォームアプローチを提案する。
このアプローチが既存のモデルより優れていることを実証し、新しいソーシャルメディアプラットフォームからのメッセージでテストすると、優れたパフォーマンスが得られることを示す。
論文 参考訳(メタデータ) (2021-02-09T15:52:34Z) - RECAST: Enabling User Recourse and Interpretability of Toxicity
Detection Models with Interactive Visualization [16.35961310670002]
本稿では,有害モデルの予測を可視化するインタラクティブなオープンソースWebツールであるRECASTについて紹介する。
その結果,RECASTはモデルにより検出された毒性の低減に有効であることが判明した。
このことは、毒性検出モデルがどのように機能し、機能するか、そしてそれらがオンライン談話の将来に与える影響について、議論を開いている。
論文 参考訳(メタデータ) (2021-02-08T18:37:50Z) - Challenges in Automated Debiasing for Toxic Language Detection [81.04406231100323]
バイアスド・アソシエーションは、有害な言語を検出するための分類器の開発において課題となっている。
我々は最近,有害な言語検出に適用されたテキスト分類データセットとモデルに対するデバイアス法について検討した。
我々の焦点は語彙(例えば、誓い言葉、スラー、アイデンティティの言及)と方言マーカー(特にアフリカ系アメリカ人の英語)である。
論文 参考訳(メタデータ) (2021-01-29T22:03:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。