論文の概要: Semantic Specialization in MoE Appears with Scale: A Study of DeepSeek R1 Expert Specialization
- arxiv url: http://arxiv.org/abs/2502.10928v1
- Date: Sat, 15 Feb 2025 23:37:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-18 14:17:02.748250
- Title: Semantic Specialization in MoE Appears with Scale: A Study of DeepSeek R1 Expert Specialization
- Title(参考訳): スケールによるMoEのセマンティックスペシャライゼーション:DeepSeek R1専門家スペシャライゼーションの検討
- Authors: Matthew Lyle Olson, Neale Ratzlaff, Musashi Hinck, Man Luo, Sungduk Yu, Chendi Xue, Vasudev Lal,
- Abstract要約: オープンソースのMixture-of-Experts(MoE)モデルであるDeepSeek-R1は、プロプライエタリフロンティアモデルに匹敵する推論能力を実証した。
ルーティング機構が従来のMoEモデルよりもセマンティックな特化を示すかどうかを検討する。
We conclusion that DeepSeek-R1's routing mechanism are more semantically aware and involved in structured Cognitive process。
- 参考スコア(独自算出の注目度): 7.457737671087695
- License:
- Abstract: DeepSeek-R1, the largest open-source Mixture-of-Experts (MoE) model, has demonstrated reasoning capabilities comparable to proprietary frontier models. Prior research has explored expert routing in MoE models, but findings suggest that expert selection is often token-dependent rather than semantically driven. Given DeepSeek-R1's enhanced reasoning abilities, we investigate whether its routing mechanism exhibits greater semantic specialization than previous MoE models. To explore this, we conduct two key experiments: (1) a word sense disambiguation task, where we examine expert activation patterns for words with differing senses, and (2) a cognitive reasoning analysis, where we assess DeepSeek-R1's structured thought process in an interactive task setting of DiscoveryWorld. We conclude that DeepSeek-R1's routing mechanism is more semantically aware and it engages in structured cognitive processes.
- Abstract(参考訳): オープンソースのMixture-of-Experts(MoE)モデルであるDeepSeek-R1は、プロプライエタリフロンティアモデルに匹敵する推論能力を実証した。
以前の研究では、MoEモデルのエキスパートルーティングが検討されていたが、専門家の選択は意味論的に駆動されるのではなく、しばしばトークンに依存していることが示唆された。
DeepSeek-R1の強化推論能力を考えると、そのルーティング機構が従来のMoEモデルよりもセマンティックな特殊化を示すかどうかを検討する。
本研究では,(1)異なる感覚を持つ単語に対する専門的なアクティベーションパターンを探索する単語感覚曖昧化タスク,(2)認知的推論分析,(2)DeepSeek-R1の構造化思考過程を,DiscoveryWorldの対話的タスク設定で評価する2つの重要な実験を行う。
We conclusion that DeepSeek-R1's routing mechanism are more semantically aware and involved in structured Cognitive process。
関連論文リスト
- GSSF: Generalized Structural Sparse Function for Deep Cross-modal Metric Learning [51.677086019209554]
ペアワイド類似性学習のためのモダリティ間の強力な関係を捕捉する汎用構造スパースを提案する。
距離メートル法は、対角線とブロック対角線の2つの形式を微妙にカプセル化する。
クロスモーダルと2つの余分なユニモーダル検索タスクの実験は、その優位性と柔軟性を検証した。
論文 参考訳(メタデータ) (2024-10-20T03:45:50Z) - Diversifying the Expert Knowledge for Task-Agnostic Pruning in Sparse Mixture-of-Experts [75.85448576746373]
本稿では,モデルのパラメータ効率を向上させるために,類似の専門家をグループ化し,グループ化する方法を提案する。
提案手法の有効性を3つの最先端MoEアーキテクチャを用いて検証する。
評価の結果,本手法は自然言語タスクにおいて,他のモデルプルーニング手法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2024-07-12T17:25:02Z) - A Closer Look into Mixture-of-Experts in Large Language Models [26.503570706063634]
エクササイズ・オブ・エクササイズ(Mixture-of-experts, MOE)は,その特性と顕著な性能から注目を集めている。
MoEアーキテクチャは計算効率を犠牲にすることなくモデルサイズを増大させることができる。
本稿は,MoEベースの大規模言語モデルの内部動作を理解するための最初の試みである。
論文 参考訳(メタデータ) (2024-06-26T10:07:57Z) - Generalization Error Analysis for Sparse Mixture-of-Experts: A Preliminary Study [65.11303133775857]
Mixture-of-Experts (MoE)計算アマルガメート予測
Sparse MoEは、限られた数、あるいは1つの専門家だけを選択的に扱うことで、経験的に保存され、時にはパフォーマンスが向上する一方で、オーバーヘッドを大幅に削減する。
論文 参考訳(メタデータ) (2024-03-26T05:48:02Z) - DeepSeekMoE: Towards Ultimate Expert Specialization in
Mixture-of-Experts Language Models [26.447210565680116]
本稿では,DeepSeekMoEアーキテクチャを究極的専門家専門化に向けて提案する。
1) 専門家を$mN$に細分化し、そこから$mK$を活性化し、活性化された専門家のより柔軟な組み合わせを可能にする。
We show that DeepSeekMoE achieves comparable performance with GShard 2.9B。
論文 参考訳(メタデータ) (2024-01-11T17:31:42Z) - Cross-target Stance Detection by Exploiting Target Analytical
Perspectives [22.320628580895164]
目標位置検出(CTSD)は,目標位置からのアノテートデータを利用することで,目標位置の姿勢を推定する重要なタスクである。
CTSDにおける重要なアプローチの1つは、複数のターゲット間の知識ギャップを埋めるために、ドメイン不変の特徴を抽出することである。
本稿では,解析的視点をブリッジとして用いたCTSDのためのMPPTモデルを提案する。
論文 参考訳(メタデータ) (2024-01-03T14:28:55Z) - Diversifying the Mixture-of-Experts Representation for Language Models with Orthogonal Optimizer [59.43462055143123]
The Mixture of Experts (MoE)は、ディープラーニングにおいて非常に成功したテクニックとして登場した。
本研究では,MoEの専門家が多様性の専門化や欠如に失敗した同質表現問題に光を当てた。
我々は,各専門家が他の専門家に分散された部分空間への方向を更新するように促す訓練戦略を交互に提案する。
論文 参考訳(メタデータ) (2023-10-15T07:20:28Z) - On the Importance of Exploration for Generalization in Reinforcement
Learning [89.63074327328765]
本研究では,不確実性の高い状態の探索を支援する方法であるEDE: Exploration via Distributional Ensembleを提案する。
当社のアルゴリズムは,ProcgenとCrafterの両面で最先端を実現するための,最初のバリューベースアプローチである。
論文 参考訳(メタデータ) (2023-06-08T18:07:02Z) - Does Deep Learning Learn to Abstract? A Systematic Probing Framework [69.2366890742283]
抽象化はディープラーニングモデルにとって望ましい機能であり、具体的なインスタンスから抽象概念を誘導し、学習コンテキストを超えて柔軟に適用することを意味する。
本稿では,伝達可能性の観点から,ディープラーニングモデルの抽象化能力を検討するための体系的探索フレームワークを提案する。
論文 参考訳(メタデータ) (2023-02-23T12:50:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。