Reduced Order Modeling with Shallow Recurrent Decoder Networks
- URL: http://arxiv.org/abs/2502.10930v1
- Date: Sat, 15 Feb 2025 23:41:31 GMT
- Title: Reduced Order Modeling with Shallow Recurrent Decoder Networks
- Authors: Matteo Tomasetto, Jan P. Williams, Francesco Braghin, Andrea Manzoni, J. Nathan Kutz,
- Abstract summary: SHRED-ROM is a robust decoding-only strategy that encodes the numerically unstable approximation of an inverse.
We show that SHRED-ROM accurately reconstructs the state dynamics for new parameter values starting from limited fixed or mobile sensors.
- Score: 5.686433280542813
- License:
- Abstract: Reduced Order Modeling is of paramount importance for efficiently inferring high-dimensional spatio-temporal fields in parametric contexts, enabling computationally tractable parametric analyses, uncertainty quantification and control. However, conventional dimensionality reduction techniques are typically limited to known and constant parameters, inefficient for nonlinear and chaotic dynamics, and uninformed to the actual system behavior. In this work, we propose sensor-driven SHallow REcurrent Decoder networks for Reduced Order Modeling (SHRED-ROM). Specifically, we consider the composition of a long short-term memory network, which encodes the temporal dynamics of limited sensor data in multiple scenarios, and a shallow decoder, which reconstructs the corresponding high-dimensional states. SHRED-ROM is a robust decoding-only strategy that circumvents the numerically unstable approximation of an inverse which is required by encoding-decoding schemes. To enhance computational efficiency and memory usage, the full-order state snapshots are reduced by, e.g., proper orthogonal decomposition, allowing for compressive training of the networks with minimal hyperparameter tuning. Through applications on chaotic and nonlinear fluid dynamics, we show that SHRED-ROM (i) accurately reconstructs the state dynamics for new parameter values starting from limited fixed or mobile sensors, independently on sensor placement, (ii) can cope with both physical, geometrical and time-dependent parametric dependencies, while being agnostic to their actual values, (iii) can accurately estimate unknown parameters, and (iv) can deal with different data sources, such as high-fidelity simulations, coupled fields and videos.
Related papers
- MultiPDENet: PDE-embedded Learning with Multi-time-stepping for Accelerated Flow Simulation [48.41289705783405]
We propose a PDE-embedded network with multiscale time stepping (MultiPDENet)
In particular, we design a convolutional filter based on the structure of finite difference with a small number of parameters to optimize.
A Physics Block with a 4th-order Runge-Kutta integrator at the fine time scale is established that embeds the structure of PDEs to guide the prediction.
arXiv Detail & Related papers (2025-01-27T12:15:51Z) - Sparse identification of nonlinear dynamics and Koopman operators with Shallow Recurrent Decoder Networks [3.1484174280822845]
We present S Identification of Dynamics with SHallow REcurrent Decoder networks (SINDy-SHRED), a method to jointly solve the sensing and model identification problems.
SINDy-SHRED uses Gated Recurrent Units (GRUs) to model the temporal sequence of sensor measurements along with shallow decoder network to reconstruct the full field from the latent state space.
We conduct a systematic experimental study including synthetic PDE data, real-world sensor measurements for sea surface temperature, and direct video data.
arXiv Detail & Related papers (2025-01-23T02:18:13Z) - Learning Physics From Video: Unsupervised Physical Parameter Estimation for Continuous Dynamical Systems [49.11170948406405]
State-of-the-art in automatic parameter estimation from video is addressed by training supervised deep networks on large datasets.
We propose a method to estimate the physical parameters of any known, continuous governing equation from single videos.
arXiv Detail & Related papers (2024-10-02T09:44:54Z) - Multi-fidelity reduced-order surrogate modeling [5.346062841242067]
We present a new data-driven strategy that combines dimensionality reduction with multi-fidelity neural network surrogates.
We show that the onset of instabilities and transients are well captured by this surrogate technique.
arXiv Detail & Related papers (2023-09-01T08:16:53Z) - Reduced order modeling of parametrized systems through autoencoders and
SINDy approach: continuation of periodic solutions [0.0]
This work presents a data-driven, non-intrusive framework which combines ROM construction with reduced dynamics identification.
The proposed approach leverages autoencoder neural networks with parametric sparse identification of nonlinear dynamics (SINDy) to construct a low-dimensional dynamical model.
These aim at tracking the evolution of periodic steady-state responses as functions of system parameters, avoiding the computation of the transient phase, and allowing to detect instabilities and bifurcations.
arXiv Detail & Related papers (2022-11-13T01:57:18Z) - NAF: Neural Attenuation Fields for Sparse-View CBCT Reconstruction [79.13750275141139]
This paper proposes a novel and fast self-supervised solution for sparse-view CBCT reconstruction.
The desired attenuation coefficients are represented as a continuous function of 3D spatial coordinates, parameterized by a fully-connected deep neural network.
A learning-based encoder entailing hash coding is adopted to help the network capture high-frequency details.
arXiv Detail & Related papers (2022-09-29T04:06:00Z) - LordNet: An Efficient Neural Network for Learning to Solve Parametric Partial Differential Equations without Simulated Data [47.49194807524502]
We propose LordNet, a tunable and efficient neural network for modeling entanglements.
The experiments on solving Poisson's equation and (2D and 3D) Navier-Stokes equation demonstrate that the long-range entanglements can be well modeled by the LordNet.
arXiv Detail & Related papers (2022-06-19T14:41:08Z) - Neural Implicit Flow: a mesh-agnostic dimensionality reduction paradigm
of spatio-temporal data [4.996878640124385]
We propose a general framework called Neural Implicit Flow (NIF) that enables a mesh-agnostic, low-rank representation of large-scale, parametric, spatialtemporal data.
NIF consists of two modified multilayer perceptrons (i) ShapeNet, which isolates and represents the spatial complexity (i) ShapeNet, which accounts for any other input measurements, including parametric dependencies, time, and sensor measurements.
We demonstrate the utility of NIF for parametric surrogate modeling, enabling the interpretable representation and compression of complex spatial-temporal dynamics, efficient many-spatial-temporal generalization, and improved performance for sparse
arXiv Detail & Related papers (2022-04-07T05:02:58Z) - Rate Distortion Characteristic Modeling for Neural Image Compression [59.25700168404325]
End-to-end optimization capability offers neural image compression (NIC) superior lossy compression performance.
distinct models are required to be trained to reach different points in the rate-distortion (R-D) space.
We make efforts to formulate the essential mathematical functions to describe the R-D behavior of NIC using deep network and statistical modeling.
arXiv Detail & Related papers (2021-06-24T12:23:05Z) - SignalNet: A Low Resolution Sinusoid Decomposition and Estimation
Network [79.04274563889548]
We propose SignalNet, a neural network architecture that detects the number of sinusoids and estimates their parameters from quantized in-phase and quadrature samples.
We introduce a worst-case learning threshold for comparing the results of our network relative to the underlying data distributions.
In simulation, we find that our algorithm is always able to surpass the threshold for three-bit data but often cannot exceed the threshold for one-bit data.
arXiv Detail & Related papers (2021-06-10T04:21:20Z) - Deep Neural Networks for Nonlinear Model Order Reduction of Unsteady
Flows [1.8065361710947976]
Reduced Order Modeling (ROM) of fluid flows has been an active research topic in the recent decade.
In this work, a novel data-driven technique based on the power of deep neural networks for reduced order modeling of the unsteady fluid flows is introduced.
arXiv Detail & Related papers (2020-07-02T07:24:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.