Empirical evaluation of LLMs in predicting fixes of Configuration bugs in Smart Home System
- URL: http://arxiv.org/abs/2502.10953v1
- Date: Sun, 16 Feb 2025 02:11:36 GMT
- Title: Empirical evaluation of LLMs in predicting fixes of Configuration bugs in Smart Home System
- Authors: Sheikh Moonwara Anjum Monisha, Atul Bharadwaj,
- Abstract summary: This study evaluates the effectiveness of Large Language Models (LLMs) in predicting fixes for configuration bugs in smart home systems.<n>The research analyzes three prominent LLMs - GPT-4, GPT-4o (GPT-4 Turbo), and Claude 3.5 Sonnet.
- Score: 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: This empirical study evaluates the effectiveness of Large Language Models (LLMs) in predicting fixes for configuration bugs in smart home systems. The research analyzes three prominent LLMs - GPT-4, GPT-4o (GPT-4 Turbo), and Claude 3.5 Sonnet - using four distinct prompt designs to assess their ability to identify appropriate fix strategies and generate correct solutions. The study utilized a dataset of 129 debugging issues from the Home Assistant Community, focusing on 21 randomly selected cases for in-depth analysis. Results demonstrate that GPT-4 and Claude 3.5 Sonnet achieved 80\% accuracy in strategy prediction when provided with both bug descriptions and original scripts. GPT-4 exhibited consistent performance across different prompt types, while GPT-4o showed advantages in speed and cost-effectiveness despite slightly lower accuracy. The findings reveal that prompt design significantly impacts model performance, with comprehensive prompts containing both description and original script yielding the best results. This research provides valuable insights for improving automated bug fixing in smart home system configurations and demonstrates the potential of LLMs in addressing configuration-related challenges.
Related papers
- Assessing Large Language Models for Automated Feedback Generation in Learning Programming Problem Solving [0.0]
Large Language Models (LLMs) have emerged as potential tools to automate feedback generation.
This study evaluates the performance of four LLMs on a benchmark dataset of 45 student solutions.
arXiv Detail & Related papers (2025-03-18T18:31:36Z) - Language Models are Few-Shot Graders [0.12289361708127876]
We present an ASAG pipeline leveraging state-of-the-art LLMs.
We compare the grading performance of three OpenAI models: GPT-4, GPT-4o, and o1-preview.
Our findings indicate that providing graded examples enhances grading accuracy, with RAG-based selection outperforming random selection.
arXiv Detail & Related papers (2025-02-18T23:38:21Z) - Large language models streamline automated systematic review: A preliminary study [12.976248955642037]
Large Language Models (LLMs) have shown promise in natural language processing tasks, with the potential to automate systematic reviews.
This study evaluates the performance of three state-of-the-art LLMs in conducting systematic review tasks.
arXiv Detail & Related papers (2025-01-09T01:59:35Z) - (WhyPHI) Fine-Tuning PHI-3 for Multiple-Choice Question Answering: Methodology, Results, and Challenges [0.0]
This work explores the potential of Microsoft's PHI-3citeAbdin2024, a compact yet efficient LLM, for answering multiple-choice questions.<n>Results show a remarkable improvement in PHI-3.5's MCQ handling post-fine-tuning, with perplexity decreasing from 4.68 to 2.27, and accuracy rising from 62% to 90.8%.
arXiv Detail & Related papers (2025-01-03T00:56:46Z) - ExACT: Teaching AI Agents to Explore with Reflective-MCTS and Exploratory Learning [78.42927884000673]
ExACT is an approach to combine test-time search and self-learning to build o1-like models for agentic applications.<n>We first introduce Reflective Monte Carlo Tree Search (R-MCTS), a novel test time algorithm designed to enhance AI agents' ability to explore decision space on the fly.<n>Next, we introduce Exploratory Learning, a novel learning strategy to teach agents to search at inference time without relying on any external search algorithms.
arXiv Detail & Related papers (2024-10-02T21:42:35Z) - See What LLMs Cannot Answer: A Self-Challenge Framework for Uncovering LLM Weaknesses [51.975495361024606]
We propose a Self-Challenge evaluation framework with human-in-the-loop.
Starting from seed instances that GPT-4 fails to answer, we prompt GPT-4 to summarize error patterns that can be used to generate new instances.
We then build a benchmark, SC-G4, consisting of 1,835 instances generated by GPT-4 using these patterns, with human-annotated gold responses.
arXiv Detail & Related papers (2024-08-16T19:01:52Z) - Are Large Language Models Strategic Decision Makers? A Study of Performance and Bias in Two-Player Non-Zero-Sum Games [56.70628673595041]
Large Language Models (LLMs) have been increasingly used in real-world settings, yet their strategic decision-making abilities remain largely unexplored.
This work investigates the performance and merits of LLMs in canonical game-theoretic two-player non-zero-sum games, Stag Hunt and Prisoner Dilemma.
Our structured evaluation of GPT-3.5, GPT-4-Turbo, GPT-4o, and Llama-3-8B shows that these models, when making decisions in these games, are affected by at least one of the following systematic biases.
arXiv Detail & Related papers (2024-07-05T12:30:02Z) - Benchmarking GPT-4 on Algorithmic Problems: A Systematic Evaluation of Prompting Strategies [47.129504708849446]
Large Language Models (LLMs) have revolutionized the field of Natural Language Processing.
LLMs lack systematic generalization, which allows to extrapolate the learned statistical regularities outside the training distribution.
In this work, we offer a systematic benchmarking of GPT-4, one of the most advanced LLMs available.
arXiv Detail & Related papers (2024-02-27T10:44:52Z) - CritiqueLLM: Towards an Informative Critique Generation Model for Evaluation of Large Language Model Generation [87.44350003888646]
Eval-Instruct can acquire pointwise grading critiques with pseudo references and revise these critiques via multi-path prompting.
CritiqueLLM is empirically shown to outperform ChatGPT and all the open-source baselines.
arXiv Detail & Related papers (2023-11-30T16:52:42Z) - Prompt Engineering or Fine Tuning: An Empirical Assessment of Large
Language Models in Automated Software Engineering Tasks [8.223311621898983]
GPT-4 with conversational prompts showed drastic improvement compared to GPT-4 with automatic prompting strategies.
fully automated prompt engineering with no human in the loop requires more study and improvement.
arXiv Detail & Related papers (2023-10-11T00:21:00Z) - Large Language Models on Wikipedia-Style Survey Generation: an Evaluation in NLP Concepts [21.150221839202878]
Large Language Models (LLMs) have achieved significant success across various general tasks.
In this work, we examine the proficiency of LLMs in generating succinct survey articles specific to the niche field of NLP in computer science.
We compare both human and GPT-based evaluation scores and provide in-depth analysis.
arXiv Detail & Related papers (2023-08-21T01:32:45Z) - Analyzing the Performance of GPT-3.5 and GPT-4 in Grammatical Error
Correction [28.58384091374763]
GPT-3 and GPT-4 models are powerful, achieving high performance on a variety of Natural Language Processing tasks.
We perform experiments testing the capabilities of a GPT-3.5 model (text-davinci-003) and a GPT-4 model (gpt-4-0314) on major GEC benchmarks.
We report the performance of our best prompt on the BEA-2019 and JFLEG datasets, finding that the GPT models can perform well in a sentence-level revision setting.
arXiv Detail & Related papers (2023-03-25T03:08:49Z) - GPT-4 Technical Report [116.90398195245983]
GPT-4 is a large-scale, multimodal model which can accept image and text inputs and produce text outputs.
It exhibits human-level performance on various professional and academic benchmarks, including passing a simulated bar exam with a score around the top 10% of test takers.
arXiv Detail & Related papers (2023-03-15T17:15:04Z) - Prompting GPT-3 To Be Reliable [117.23966502293796]
This work decomposes reliability into four facets: generalizability, fairness, calibration, and factuality.
We find that GPT-3 outperforms smaller-scale supervised models by large margins on all these facets.
arXiv Detail & Related papers (2022-10-17T14:52:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.