Benchmarking GPT-4 on Algorithmic Problems: A Systematic Evaluation of Prompting Strategies
- URL: http://arxiv.org/abs/2402.17396v2
- Date: Thu, 11 Jul 2024 15:54:45 GMT
- Title: Benchmarking GPT-4 on Algorithmic Problems: A Systematic Evaluation of Prompting Strategies
- Authors: Flavio Petruzzellis, Alberto Testolin, Alessandro Sperduti,
- Abstract summary: Large Language Models (LLMs) have revolutionized the field of Natural Language Processing.
LLMs lack systematic generalization, which allows to extrapolate the learned statistical regularities outside the training distribution.
In this work, we offer a systematic benchmarking of GPT-4, one of the most advanced LLMs available.
- Score: 47.129504708849446
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Large Language Models (LLMs) have revolutionized the field of Natural Language Processing thanks to their ability to reuse knowledge acquired on massive text corpora on a wide variety of downstream tasks, with minimal (if any) tuning steps. At the same time, it has been repeatedly shown that LLMs lack systematic generalization, which allows to extrapolate the learned statistical regularities outside the training distribution. In this work, we offer a systematic benchmarking of GPT-4, one of the most advanced LLMs available, on three algorithmic tasks characterized by the possibility to control the problem difficulty with two parameters. We compare the performance of GPT-4 with that of its predecessor (GPT-3.5) and with a variant of the Transformer-Encoder architecture recently introduced to solve similar tasks, the Neural Data Router. We find that the deployment of advanced prompting techniques allows GPT-4 to reach superior accuracy on all tasks, demonstrating that state-of-the-art LLMs constitute a very strong baseline also in challenging tasks that require systematic generalization.
Related papers
- See What LLMs Cannot Answer: A Self-Challenge Framework for Uncovering LLM Weaknesses [51.975495361024606]
We propose a Self-Challenge evaluation framework with human-in-the-loop.
Starting from seed instances that GPT-4 fails to answer, we prompt GPT-4 to summarize error patterns that can be used to generate new instances.
We then build a benchmark, SC-G4, consisting of 1,835 instances generated by GPT-4 using these patterns, with human-annotated gold responses.
arXiv Detail & Related papers (2024-08-16T19:01:52Z) - RankRAG: Unifying Context Ranking with Retrieval-Augmented Generation in LLMs [60.38044044203333]
Large language models (LLMs) typically utilize the top-k contexts from a retriever in retrieval-augmented generation (RAG)
We propose a novel instruction fine-tuning framework RankRAG, which instruction-tunes a single LLM for the dual purpose of context ranking and answer generation in RAG.
For generation, we compare our model with many strong baselines, including GPT-4-0613, GPT-4-turbo-2024-0409, and ChatQA-1.5, an open-sourced model with the state-of-the-art performance on RAG benchmarks.
arXiv Detail & Related papers (2024-07-02T17:59:17Z) - Navigating the Labyrinth: Evaluating and Enhancing LLMs' Ability to Reason About Search Problems [59.72548591120689]
We introduce a new benchmark, SearchBench, containing 11 unique search problem types.
We show that even the most advanced LLMs fail to solve these problems end-to-end in text.
Instructing LLMs to generate code that solves the problem helps, but only slightly, e.g., GPT4's performance rises to 11.7%.
arXiv Detail & Related papers (2024-06-18T00:44:58Z) - LM4OPT: Unveiling the Potential of Large Language Models in Formulating
Mathematical Optimization Problems [0.0]
This study compares prominent Large Language Models, including GPT-3.5, GPT-4, and Llama-2-7b, in zero-shot and one-shot settings.
Our findings show GPT-4's superior performance, particularly in the one-shot scenario.
arXiv Detail & Related papers (2024-03-02T23:32:33Z) - Limits of Transformer Language Models on Learning to Compose Algorithms [77.2443883991608]
We evaluate training LLaMA models and prompting GPT-4 and Gemini on four tasks demanding to learn a composition of several discrete sub-tasks.
Our results indicate that compositional learning in state-of-the-art Transformer language models is highly sample inefficient.
arXiv Detail & Related papers (2024-02-08T16:23:29Z) - TAT-LLM: A Specialized Language Model for Discrete Reasoning over Tabular and Textual Data [73.29220562541204]
We consider harnessing the amazing power of language models (LLMs) to solve our task.
We develop a TAT-LLM language model by fine-tuning LLaMA 2 with the training data generated automatically from existing expert-annotated datasets.
arXiv Detail & Related papers (2024-01-24T04:28:50Z) - Prompt Engineering or Fine Tuning: An Empirical Assessment of Large
Language Models in Automated Software Engineering Tasks [8.223311621898983]
GPT-4 with conversational prompts showed drastic improvement compared to GPT-4 with automatic prompting strategies.
fully automated prompt engineering with no human in the loop requires more study and improvement.
arXiv Detail & Related papers (2023-10-11T00:21:00Z) - Benchmarking the Abilities of Large Language Models for RDF Knowledge
Graph Creation and Comprehension: How Well Do LLMs Speak Turtle? [0.0]
Large Language Models (LLMs) are advancing at a rapid pace, with significant improvements at natural language processing and coding tasks.
To evaluate the proficiency of various LLMs, we created a set of five tasks that probe their ability to parse, understand, analyze, and create knowledge graphs serialized in Turtle syntax.
The evaluation encompassed four commercially available LLMs - GPT-3.5, GPT-4, Claude 1.3, and Claude 2.0, as well as two freely accessible offline models, GPT4All Vicuna and GPT4All Falcon 13B.
arXiv Detail & Related papers (2023-09-29T10:36:04Z) - GPT-Fathom: Benchmarking Large Language Models to Decipher the Evolutionary Path towards GPT-4 and Beyond [29.778018058541676]
GPT-Fathom is an open-source and reproducible evaluation suite for large language models (LLMs) built on top of OpenAI Evals.
We evaluate 10+ leading LLMs as well as OpenAI's legacy models on 20+ curated benchmarks across 7 capability categories, all aligned under settings.
arXiv Detail & Related papers (2023-09-28T16:43:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.