Skillful Nowcasting of Convective Clouds With a Cascade Diffusion Model
- URL: http://arxiv.org/abs/2502.10957v1
- Date: Sun, 16 Feb 2025 02:29:13 GMT
- Title: Skillful Nowcasting of Convective Clouds With a Cascade Diffusion Model
- Authors: Haoming Chen, Xiaohui Zhong, Qiang Zhai, Xiaomeng Li, Ying Wa Chan, Pak Wai Chan, Yuanyuan Huang, Hao Li, Xiaoming Shi,
- Abstract summary: We introduce SATcast, a diffusion model that leverages a cascade architecture and multimodal inputs for nowcasting cloud fields in satellite imagery.
SATcast outperforms conventional methods on multiple metrics, demonstrating its superior accuracy and robustness.
Notably, SATcast maintains predictive skill for up to 24 hours, underscoring its potential for operational nowcasting applications.
- Score: 16.57308701942378
- License:
- Abstract: Accurate nowcasting of convective clouds from satellite imagery is essential for mitigating the impacts of meteorological disasters, especially in developing countries and remote regions with limited ground-based observations. Recent advances in deep learning have shown promise in video prediction; however, existing models frequently produce blurry results and exhibit reduced accuracy when forecasting physical fields. Here, we introduce SATcast, a diffusion model that leverages a cascade architecture and multimodal inputs for nowcasting cloud fields in satellite imagery. SATcast incorporates physical fields predicted by FuXi, a deep-learning weather model, alongside past satellite observations as conditional inputs to generate high-quality future cloud fields. Through comprehensive evaluation, SATcast outperforms conventional methods on multiple metrics, demonstrating its superior accuracy and robustness. Ablation studies underscore the importance of its multimodal design and the cascade architecture in achieving reliable predictions. Notably, SATcast maintains predictive skill for up to 24 hours, underscoring its potential for operational nowcasting applications.
Related papers
- MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
Downscaling, a crucial task in meteorological forecasting, enables the reconstruction of high-resolution meteorological states for target regions.
Previous downscaling methods lacked tailored designs for meteorology and encountered structural limitations.
We propose a novel model called MambaDS, which enhances the utilization of multivariable correlations and topography information.
arXiv Detail & Related papers (2024-08-20T13:45:49Z) - Four-hour thunderstorm nowcasting using deep diffusion models of satellite [13.44153183086588]
We propose deep diffusion models of satellite (DDMS) to establish an AI-based convection nowcasting system.
During long-term tests and objective validation based on the FengYun-4A satellite, our system achieves, for the first time, effective convection nowcasting up to 4 hours.
Our system operates efficiently (forecasting 4 hours of convection in 8 minutes), and is highly transferable with the potential to collaborate with multiple satellites.
arXiv Detail & Related papers (2024-04-16T12:33:44Z) - Forecasting the Future with Future Technologies: Advancements in Large Meteorological Models [3.332582598089642]
The field of meteorological forecasting has undergone a significant transformation with the integration of large models.
Models like FourCastNet, Pangu-Weather, GraphCast, ClimaX, and FengWu have made notable contributions by providing accurate, high-resolution forecasts.
arXiv Detail & Related papers (2024-04-10T00:52:54Z) - Weather Prediction with Diffusion Guided by Realistic Forecast Processes [49.07556359513563]
We introduce a novel method that applies diffusion models (DM) for weather forecasting.
Our method can achieve both direct and iterative forecasting with the same modeling framework.
The flexibility and controllability of our model empowers a more trustworthy DL system for the general weather community.
arXiv Detail & Related papers (2024-02-06T21:28:42Z) - CasCast: Skillful High-resolution Precipitation Nowcasting via Cascaded
Modelling [93.65319031345197]
We propose CasCast, a cascaded framework composed of a deterministic and a probabilistic part to decouple predictions for mesoscale precipitation distributions and small-scale patterns.
CasCast significantly surpasses the baseline (up to +91.8%) for regional extreme-precipitation nowcasting.
arXiv Detail & Related papers (2024-02-06T08:30:47Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
We introduce Exloss, a novel loss function that performs asymmetric optimization and highlights extreme values to obtain accurate extreme weather forecast.
We also introduce ExBooster, which captures the uncertainty in prediction outcomes by employing multiple random samples.
Our solution can achieve state-of-the-art performance in extreme weather prediction, while maintaining the overall forecast accuracy comparable to the top medium-range forecast models.
arXiv Detail & Related papers (2024-02-02T10:34:13Z) - Learning Robust Precipitation Forecaster by Temporal Frame Interpolation [65.5045412005064]
We develop a robust precipitation forecasting model that demonstrates resilience against spatial-temporal discrepancies.
Our approach has led to significant improvements in forecasting precision, culminating in our model securing textit1st place in the transfer learning leaderboard of the textitWeather4cast'23 competition.
arXiv Detail & Related papers (2023-11-30T08:22:08Z) - Transformer-based nowcasting of radar composites from satellite images
for severe weather [45.0983299269404]
We present a Transformer-based model for nowcasting ground-based radar image sequences using satellite data up to two hours lead time.
Trained on a dataset reflecting severe weather conditions, the model predicts radar fields occurring under different weather phenomena.
The model can support precipitation nowcasting across large domains without an explicit need for radar towers.
arXiv Detail & Related papers (2023-10-30T13:17:38Z) - Benchmarking of Deep Learning Irradiance Forecasting Models from Sky
Images -- an in-depth Analysis [0.0]
We train four commonly used Deep Learning architectures to forecast solar irradiance from sequences of hemispherical sky images.
Results show that encodingtemporal aspects greatly improved the predictions with 10 min Forecast Skill reaching 20.4% on the test year.
We conclude that, with a common setup, Deep Learning models tend to behave just as a'very smart persistence model', temporally aligned with the persistence model while mitigating its most penalising errors.
arXiv Detail & Related papers (2021-02-01T09:31:14Z) - Cloud Cover Nowcasting with Deep Learning [0.0]
We focus on cloud cover nowcasting, which has various application areas such as satellite shots optimisation and photovoltaic energy production forecast.
We apply deep convolutionnal neural networks on Meteosat satellite images for cloud cover nowcasting.
arXiv Detail & Related papers (2020-09-24T09:57:29Z) - SmaAt-UNet: Precipitation Nowcasting using a Small Attention-UNet
Architecture [5.28539620288341]
We show that it is possible to produce an accurate precipitation nowcast using a data-driven neural network approach.
We evaluate our approaches on a real-life datasets using precipitation maps from the region of the Netherlands and binary images of cloud coverage of France.
arXiv Detail & Related papers (2020-07-08T20:33:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.