SmaAt-UNet: Precipitation Nowcasting using a Small Attention-UNet
Architecture
- URL: http://arxiv.org/abs/2007.04417v2
- Date: Sun, 24 Jan 2021 09:01:36 GMT
- Title: SmaAt-UNet: Precipitation Nowcasting using a Small Attention-UNet
Architecture
- Authors: Kevin Trebing, Tomasz Stanczyk and Siamak Mehrkanoon
- Abstract summary: We show that it is possible to produce an accurate precipitation nowcast using a data-driven neural network approach.
We evaluate our approaches on a real-life datasets using precipitation maps from the region of the Netherlands and binary images of cloud coverage of France.
- Score: 5.28539620288341
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Weather forecasting is dominated by numerical weather prediction that tries
to model accurately the physical properties of the atmosphere. A downside of
numerical weather prediction is that it is lacking the ability for short-term
forecasts using the latest available information. By using a data-driven neural
network approach we show that it is possible to produce an accurate
precipitation nowcast. To this end, we propose SmaAt-UNet, an efficient
convolutional neural networks-based on the well known UNet architecture
equipped with attention modules and depthwise-separable convolutions. We
evaluate our approaches on a real-life datasets using precipitation maps from
the region of the Netherlands and binary images of cloud coverage of France.
The experimental results show that in terms of prediction performance, the
proposed model is comparable to other examined models while only using a
quarter of the trainable parameters.
Related papers
- Weather Prediction with Diffusion Guided by Realistic Forecast Processes [49.07556359513563]
We introduce a novel method that applies diffusion models (DM) for weather forecasting.
Our method can achieve both direct and iterative forecasting with the same modeling framework.
The flexibility and controllability of our model empowers a more trustworthy DL system for the general weather community.
arXiv Detail & Related papers (2024-02-06T21:28:42Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
We introduce Exloss, a novel loss function that performs asymmetric optimization and highlights extreme values to obtain accurate extreme weather forecast.
We also introduce ExBooster, which captures the uncertainty in prediction outcomes by employing multiple random samples.
Our solution can achieve state-of-the-art performance in extreme weather prediction, while maintaining the overall forecast accuracy comparable to the top medium-range forecast models.
arXiv Detail & Related papers (2024-02-02T10:34:13Z) - Scaling transformer neural networks for skillful and reliable medium-range weather forecasting [23.249955524044392]
We introduce Stormer, a state-of-the-art performance on weather forecasting with minimal changes to the standard transformer backbone.
At the core of Stormer is a randomized forecasting objective that trains the model to forecast the weather dynamics over varying time intervals.
On WeatherBench 2, Stormer performs competitively at short to medium-range forecasts and outperforms current methods beyond 7 days.
arXiv Detail & Related papers (2023-12-06T19:46:06Z) - Short-term Precipitation Forecasting in The Netherlands: An Application
of Convolutional LSTM neural networks to weather radar data [0.0]
The research exploits the combination of Convolutional Neural Networks (CNNs) layers for spatial pattern recognition and LSTM network layers for modelling temporal sequences.
The model was trained and validated on weather radar data from the Netherlands.
Results indicate high accuracy in predicting the direction and intensity of precipitation movements.
arXiv Detail & Related papers (2023-12-02T18:13:45Z) - Learning Robust Precipitation Forecaster by Temporal Frame Interpolation [65.5045412005064]
We develop a robust precipitation forecasting model that demonstrates resilience against spatial-temporal discrepancies.
Our approach has led to significant improvements in forecasting precision, culminating in our model securing textit1st place in the transfer learning leaderboard of the textitWeather4cast'23 competition.
arXiv Detail & Related papers (2023-11-30T08:22:08Z) - Precipitation nowcasting with generative diffusion models [0.0]
We study the efficacy of diffusion models in handling the task of precipitation nowcasting.
Our work is conducted in comparison to the performance of well-established U-Net models.
arXiv Detail & Related papers (2023-08-13T09:51:16Z) - Deep Learning for Day Forecasts from Sparse Observations [60.041805328514876]
Deep neural networks offer an alternative paradigm for modeling weather conditions.
MetNet-3 learns from both dense and sparse data sensors and makes predictions up to 24 hours ahead for precipitation, wind, temperature and dew point.
MetNet-3 has a high temporal and spatial resolution, respectively, up to 2 minutes and 1 km as well as a low operational latency.
arXiv Detail & Related papers (2023-06-06T07:07:54Z) - Predicting Temporal Aspects of Movement for Predictive Replication in
Fog Environments [0.0]
Blind or reactive data falls short in harnessing the potential of fog computing.
We propose a novel model using Holt-Winter's Exponential Smoothing for temporal prediction.
In a fog network simulation with real user trajectories our model achieves a 15% reduction in excess data with a marginal 1% decrease in data availability.
arXiv Detail & Related papers (2023-06-01T11:45:13Z) - Forecasting large-scale circulation regimes using deformable
convolutional neural networks and global spatiotemporal climate data [86.1450118623908]
We investigate a supervised machine learning approach based on deformable convolutional neural networks (deCNNs)
We forecast the North Atlantic-European weather regimes during extended boreal winter for 1 to 15 days into the future.
Due to its wider field of view, we also observe deCNN achieving considerably better performance than regular convolutional neural networks at lead times beyond 5-6 days.
arXiv Detail & Related papers (2022-02-10T11:37:00Z) - A generative adversarial network approach to (ensemble) weather
prediction [91.3755431537592]
We use a conditional deep convolutional generative adversarial network to predict the geopotential height of the 500 hPa pressure level, the two-meter temperature and the total precipitation for the next 24 hours over Europe.
The proposed models are trained on 4 years of ERA5 reanalysis data from 2015-2018 with the goal to predict the associated meteorological fields in 2019.
arXiv Detail & Related papers (2020-06-13T20:53:17Z) - Improving data-driven global weather prediction using deep convolutional
neural networks on a cubed sphere [7.918783985810551]
We present a significantly-improved data-driven global weather forecasting framework using a deep convolutional neural network (CNN)
New developments in this framework include an offline volume-conservative mapping to a cubed-sphere grid.
Our model is able to learn to forecast complex surface temperature patterns from few input atmospheric state variables.
arXiv Detail & Related papers (2020-03-15T19:57:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.