Is Elo Rating Reliable? A Study Under Model Misspecification
- URL: http://arxiv.org/abs/2502.10985v1
- Date: Sun, 16 Feb 2025 04:07:33 GMT
- Title: Is Elo Rating Reliable? A Study Under Model Misspecification
- Authors: Shange Tang, Yuanhao Wang, Chi Jin,
- Abstract summary: We show that most games deviate significantly from the assumptions of the Bradley-Terry model, raising questions on the reliability of Elo.
Despite these deviations, Elo frequently outperforms more complex rating systems.
We observe a strong correlation between Elo's predictive accuracy and its ranking performance.
- Score: 18.36167187657728
- License:
- Abstract: Elo rating, widely used for skill assessment across diverse domains ranging from competitive games to large language models, is often understood as an incremental update algorithm for estimating a stationary Bradley-Terry (BT) model. However, our empirical analysis of practical matching datasets reveals two surprising findings: (1) Most games deviate significantly from the assumptions of the BT model and stationarity, raising questions on the reliability of Elo. (2) Despite these deviations, Elo frequently outperforms more complex rating systems, such as mElo and pairwise models, which are specifically designed to account for non-BT components in the data, particularly in terms of win rate prediction. This paper explains this unexpected phenomenon through three key perspectives: (a) We reinterpret Elo as an instance of online gradient descent, which provides no-regret guarantees even in misspecified and non-stationary settings. (b) Through extensive synthetic experiments on data generated from transitive but non-BT models, such as strongly or weakly stochastic transitive models, we show that the ''sparsity'' of practical matching data is a critical factor behind Elo's superior performance in prediction compared to more complex rating systems. (c) We observe a strong correlation between Elo's predictive accuracy and its ranking performance, further supporting its effectiveness in ranking.
Related papers
- Beyond Exact Match: Semantically Reassessing Event Extraction by Large Language Models [69.38024658668887]
Current evaluation method for event extraction relies on token-level exact match.
We propose RAEE, an automatic evaluation framework that accurately assesses event extraction results at semantic-level instead of token-level.
arXiv Detail & Related papers (2024-10-12T07:54:01Z) - Adaptation of the Multi-Concept Multivariate Elo Rating System to Medical Students Training Data [6.222836318380985]
Elo rating system is widely recognized for its proficiency in predicting student performance.
This paper presents an adaptation of a multi concept variant of the Elo rating system to the data collected by a medical training platform.
arXiv Detail & Related papers (2024-02-26T19:19:56Z) - Elo Uncovered: Robustness and Best Practices in Language Model
Evaluation [9.452326973655447]
We study two axioms that evaluation methods should adhere to: reliability and transitivity.
We show that these axioms are not always satisfied raising questions about the reliability of current comparative evaluations of LLMs.
arXiv Detail & Related papers (2023-11-29T00:45:23Z) - Preserving Knowledge Invariance: Rethinking Robustness Evaluation of Open Information Extraction [49.15931834209624]
We present the first benchmark that simulates the evaluation of open information extraction models in the real world.
We design and annotate a large-scale testbed in which each example is a knowledge-invariant clique.
By further elaborating the robustness metric, a model is judged to be robust if its performance is consistently accurate on the overall cliques.
arXiv Detail & Related papers (2023-05-23T12:05:09Z) - Think Twice: Measuring the Efficiency of Eliminating Prediction
Shortcuts of Question Answering Models [3.9052860539161918]
We propose a simple method for measuring a scale of models' reliance on any identified spurious feature.
We assess the robustness towards a large set of known and newly found prediction biases for various pre-trained models and debiasing methods in Question Answering (QA)
We find that while existing debiasing methods can mitigate reliance on a chosen spurious feature, the OOD performance gains of these methods can not be explained by mitigated reliance on biased features.
arXiv Detail & Related papers (2023-05-11T14:35:00Z) - Delving into Identify-Emphasize Paradigm for Combating Unknown Bias [52.76758938921129]
We propose an effective bias-conflicting scoring method (ECS) to boost the identification accuracy.
We also propose gradient alignment (GA) to balance the contributions of the mined bias-aligned and bias-conflicting samples.
Experiments are conducted on multiple datasets in various settings, demonstrating that the proposed solution can mitigate the impact of unknown biases.
arXiv Detail & Related papers (2023-02-22T14:50:24Z) - Systematic Evaluation of Predictive Fairness [60.0947291284978]
Mitigating bias in training on biased datasets is an important open problem.
We examine the performance of various debiasing methods across multiple tasks.
We find that data conditions have a strong influence on relative model performance.
arXiv Detail & Related papers (2022-10-17T05:40:13Z) - Improving QA Generalization by Concurrent Modeling of Multiple Biases [61.597362592536896]
Existing NLP datasets contain various biases that models can easily exploit to achieve high performances on the corresponding evaluation sets.
We propose a general framework for improving the performance on both in-domain and out-of-domain datasets by concurrent modeling of multiple biases in the training data.
We extensively evaluate our framework on extractive question answering with training data from various domains with multiple biases of different strengths.
arXiv Detail & Related papers (2020-10-07T11:18:49Z) - Accurate and Robust Feature Importance Estimation under Distribution
Shifts [49.58991359544005]
PRoFILE is a novel feature importance estimation method.
We show significant improvements over state-of-the-art approaches, both in terms of fidelity and robustness.
arXiv Detail & Related papers (2020-09-30T05:29:01Z) - ELMV: an Ensemble-Learning Approach for Analyzing Electrical Health
Records with Significant Missing Values [4.9810955364960385]
We propose a novel Ensemble-Learning for Missing Value (ELMV) framework, which introduces an effective approach to construct multiple subsets of the original EHR data with a much lower missing rate.
ELMV has been evaluated on a real-world healthcare data for critical feature identification as well as a batch of simulation data with different missing rates for outcome prediction.
arXiv Detail & Related papers (2020-06-25T06:29:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.