SSVEP-BiMA: Bifocal Masking Attention Leveraging Native and Symmetric-Antisymmetric Components for Robust SSVEP Decoding
- URL: http://arxiv.org/abs/2502.10994v1
- Date: Sun, 16 Feb 2025 04:58:59 GMT
- Title: SSVEP-BiMA: Bifocal Masking Attention Leveraging Native and Symmetric-Antisymmetric Components for Robust SSVEP Decoding
- Authors: Yuxin Liu, Zhenxi Song, Guoyang Xu, Zirui Wang, Feng Wan, Yong Hu, Min Zhang, Zhiguo Zhang,
- Abstract summary: Brain-computer interface (BCI) based on steady-state visual evoked potentials (SSVEP) is a popular paradigm for its simplicity and high information transfer rate (ITR)<n>This paper proposed a biofocal masking attention-based method (SSVEP-BiMA) that synergistically leverages the native and symmetric-antisymmetric components for decoding SSVEP.<n>We performed experiments on two public datasets, and the results demonstrate that our proposed method surpasses baseline approaches in both accuracy and ITR.
- Score: 22.552864992278316
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Brain-computer interface (BCI) based on steady-state visual evoked potentials (SSVEP) is a popular paradigm for its simplicity and high information transfer rate (ITR). Accurate and fast SSVEP decoding is crucial for reliable BCI performance. However, conventional decoding methods demand longer time windows, and deep learning models typically require subject-specific fine-tuning, leaving challenges in achieving optimal performance in cross-subject settings. This paper proposed a biofocal masking attention-based method (SSVEP-BiMA) that synergistically leverages the native and symmetric-antisymmetric components for decoding SSVEP. By utilizing multiple signal representations, the network is able to integrate features from a wider range of sample perspectives, leading to more generalized and comprehensive feature learning, which enhances both prediction accuracy and robustness. We performed experiments on two public datasets, and the results demonstrate that our proposed method surpasses baseline approaches in both accuracy and ITR. We believe that this work will contribute to the development of more efficient SSVEP-based BCI systems.
Related papers
- Review, Refine, Repeat: Understanding Iterative Decoding of AI Agents with Dynamic Evaluation and Selection [71.92083784393418]
Inference-time methods such as Best-of-N (BON) sampling offer a simple yet effective alternative to improve performance.
We propose Iterative Agent Decoding (IAD) which combines iterative refinement with dynamic candidate evaluation and selection guided by a verifier.
arXiv Detail & Related papers (2025-04-02T17:40:47Z) - Semi-supervised Semantic Segmentation with Multi-Constraint Consistency Learning [81.02648336552421]
We propose a Multi-Constraint Consistency Learning approach to facilitate the staged enhancement of the encoder and decoder.
Self-adaptive feature masking and noise injection are designed in an instance-specific manner to perturb the features for robust learning of the decoder.
Experimental results on Pascal VOC2012 and Cityscapes datasets demonstrate that our proposed MCCL achieves new state-of-the-art performance.
arXiv Detail & Related papers (2025-03-23T03:21:33Z) - IncepFormerNet: A multi-scale multi-head attention network for SSVEP classification [12.935583315234553]
This study proposes a new model called IncepFormerNet, which is a hybrid of the Inception and Transformer architectures.
IncepFormerNet adeptly extracts multi-scale temporal information from time series data using parallel convolution kernels of varying sizes.
It takes advantage of filter bank techniques to extract features based on the spectral characteristics of SSVEP data.
arXiv Detail & Related papers (2025-02-04T13:04:03Z) - BiDense: Binarization for Dense Prediction [62.70804353158387]
BiDense is a generalized binary neural network (BNN) designed for efficient and accurate dense prediction tasks.
BiDense incorporates two key techniques: the Distribution-adaptive Binarizer (DAB) and the Channel-adaptive Full-precision Bypass (CFB)
arXiv Detail & Related papers (2024-11-15T16:46:04Z) - Dual-TSST: A Dual-Branch Temporal-Spectral-Spatial Transformer Model for EEG Decoding [2.0721229324537833]
We propose a novel decoding architecture network with a dual-branch temporal-spectral-spatial transformer (Dual-TSST)
Our proposed Dual-TSST performs superiorly in various tasks, which achieves the promising EEG classification performance of average accuracy of 80.67%.
This study provides a new approach to high-performance EEG decoding, and has great potential for future CNN-Transformer based applications.
arXiv Detail & Related papers (2024-09-05T05:08:43Z) - A Temporal-Spectral Fusion Transformer with Subject-Specific Adapter for Enhancing RSVP-BCI Decoding [15.000487099591776]
RSVP-based Brain-Computer Interface (BCI) is an efficient technology for target retrieval using electroencephalography (EEG) signals.
Traditional decoding methods rely on a substantial amount of training data from new test subjects.
We propose a subject-specific adapter to rapidly transfer the knowledge of the model trained on data from existing subjects to decode data from new subjects.
arXiv Detail & Related papers (2024-01-12T03:18:51Z) - A Meta-Learning Based Precoder Optimization Framework for Rate-Splitting
Multiple Access [53.191806757701215]
We propose the use of a meta-learning based precoder optimization framework to directly optimize the Rate-Splitting Multiple Access (RSMA) precoders with partial Channel State Information at the Transmitter (CSIT)
By exploiting the overfitting of the compact neural network to maximize the explicit Average Sum-Rate (ASR) expression, we effectively bypass the need for any other training data while minimizing the total running time.
Numerical results reveal that the meta-learning based solution achieves similar ASR performance to conventional precoder optimization in medium-scale scenarios, and significantly outperforms sub-optimal low complexity precoder algorithms in the large-scale
arXiv Detail & Related papers (2023-07-17T20:31:41Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
This paper proposes the first end-to-end differentiable meta-BO framework that generalises neural processes to learn acquisition functions via transformer architectures.
We enable this end-to-end framework with reinforcement learning (RL) to tackle the lack of labelled acquisition data.
arXiv Detail & Related papers (2023-05-25T10:58:46Z) - Contrastive variational information bottleneck for aspect-based
sentiment analysis [36.83876224466177]
We propose to reduce spurious correlations for aspect-based sentiment analysis (ABSA) via a novel Contrastive Variational Information Bottleneck framework (called CVIB)
The proposed CVIB framework is composed of an original network and a self-pruned network, and these two networks are optimized simultaneously via contrastive learning.
Our approach achieves better performance than the strong competitors in terms of overall prediction performance, robustness, and generalization.
arXiv Detail & Related papers (2023-03-06T02:52:37Z) - Information Transfer Rate in BCIs: Towards Tightly Integrated Symbiosis [0.0]
The information transmission rate (ITR), or effective bit rate, is a popular and widely used information measurement metric.
To accurately depict performance and inspire an end-to-end design for futuristic BCI designs, a more thorough examination and definition of ITR is required.
We model the symbiotic communication medium, hosted by the retinogeniculate visual pathway, as a discrete memoryless channel and use the modified capacity expressions to redefine the ITR.
arXiv Detail & Related papers (2023-01-01T23:07:59Z) - Neural BRDF Representation and Importance Sampling [79.84316447473873]
We present a compact neural network-based representation of reflectance BRDF data.
We encode BRDFs as lightweight networks, and propose a training scheme with adaptive angular sampling.
We evaluate encoding results on isotropic and anisotropic BRDFs from multiple real-world datasets.
arXiv Detail & Related papers (2021-02-11T12:00:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.