A Temporal-Spectral Fusion Transformer with Subject-Specific Adapter for Enhancing RSVP-BCI Decoding
- URL: http://arxiv.org/abs/2401.06340v2
- Date: Thu, 11 Jul 2024 05:07:54 GMT
- Title: A Temporal-Spectral Fusion Transformer with Subject-Specific Adapter for Enhancing RSVP-BCI Decoding
- Authors: Xujin Li, Wei Wei, Shuang Qiu, Huiguang He,
- Abstract summary: RSVP-based Brain-Computer Interface (BCI) is an efficient technology for target retrieval using electroencephalography (EEG) signals.
Traditional decoding methods rely on a substantial amount of training data from new test subjects.
We propose a subject-specific adapter to rapidly transfer the knowledge of the model trained on data from existing subjects to decode data from new subjects.
- Score: 15.000487099591776
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Rapid Serial Visual Presentation (RSVP)-based Brain-Computer Interface (BCI) is an efficient technology for target retrieval using electroencephalography (EEG) signals. The performance improvement of traditional decoding methods relies on a substantial amount of training data from new test subjects, which increases preparation time for BCI systems. Several studies introduce data from existing subjects to reduce the dependence of performance improvement on data from new subjects, but their optimization strategy based on adversarial learning with extensive data increases training time during the preparation procedure. Moreover, most previous methods only focus on the single-view information of EEG signals, but ignore the information from other views which may further improve performance. To enhance decoding performance while reducing preparation time, we propose a Temporal-Spectral fusion transformer with Subject-specific Adapter (TSformer-SA). Specifically, a cross-view interaction module is proposed to facilitate information transfer and extract common representations across two-view features extracted from EEG temporal signals and spectrogram images. Then, an attention-based fusion module fuses the features of two views to obtain comprehensive discriminative features for classification. Furthermore, a multi-view consistency loss is proposed to maximize the feature similarity between two views of the same EEG signal. Finally, we propose a subject-specific adapter to rapidly transfer the knowledge of the model trained on data from existing subjects to decode data from new subjects. Experimental results show that TSformer-SA significantly outperforms comparison methods and achieves outstanding performance with limited training data from new subjects. This facilitates efficient decoding and rapid deployment of BCI systems in practical use.
Related papers
- Dual-TSST: A Dual-Branch Temporal-Spectral-Spatial Transformer Model for EEG Decoding [2.0721229324537833]
We propose a novel decoding architecture network with a dual-branch temporal-spectral-spatial transformer (Dual-TSST)
Our proposed Dual-TSST performs superiorly in various tasks, which achieves the promising EEG classification performance of average accuracy of 80.67%.
This study provides a new approach to high-performance EEG decoding, and has great potential for future CNN-Transformer based applications.
arXiv Detail & Related papers (2024-09-05T05:08:43Z) - DetDiffusion: Synergizing Generative and Perceptive Models for Enhanced Data Generation and Perception [78.26734070960886]
Current perceptive models heavily depend on resource-intensive datasets.
We introduce perception-aware loss (P.A. loss) through segmentation, improving both quality and controllability.
Our method customizes data augmentation by extracting and utilizing perception-aware attribute (P.A. Attr) during generation.
arXiv Detail & Related papers (2024-03-20T04:58:03Z) - Data Augmentation for Traffic Classification [54.92823760790628]
Data Augmentation (DA) is a technique widely adopted in Computer Vision (CV) and Natural Language Processing (NLP) tasks.
DA has struggled to gain traction in networking contexts, particularly in Traffic Classification (TC) tasks.
arXiv Detail & Related papers (2024-01-19T15:25:09Z) - PREM: A Simple Yet Effective Approach for Node-Level Graph Anomaly
Detection [65.24854366973794]
Node-level graph anomaly detection (GAD) plays a critical role in identifying anomalous nodes from graph-structured data in domains such as medicine, social networks, and e-commerce.
We introduce a simple method termed PREprocessing and Matching (PREM for short) to improve the efficiency of GAD.
Our approach streamlines GAD, reducing time and memory consumption while maintaining powerful anomaly detection capabilities.
arXiv Detail & Related papers (2023-10-18T02:59:57Z) - Implicit Counterfactual Data Augmentation for Robust Learning [24.795542869249154]
This study proposes an Implicit Counterfactual Data Augmentation method to remove spurious correlations and make stable predictions.
Experiments have been conducted across various biased learning scenarios covering both image and text datasets.
arXiv Detail & Related papers (2023-04-26T10:36:40Z) - Improved Speech Emotion Recognition using Transfer Learning and
Spectrogram Augmentation [56.264157127549446]
Speech emotion recognition (SER) is a challenging task that plays a crucial role in natural human-computer interaction.
One of the main challenges in SER is data scarcity.
We propose a transfer learning strategy combined with spectrogram augmentation.
arXiv Detail & Related papers (2021-08-05T10:39:39Z) - Adversarial Feature Augmentation and Normalization for Visual
Recognition [109.6834687220478]
Recent advances in computer vision take advantage of adversarial data augmentation to ameliorate the generalization ability of classification models.
Here, we present an effective and efficient alternative that advocates adversarial augmentation on intermediate feature embeddings.
We validate the proposed approach across diverse visual recognition tasks with representative backbone networks.
arXiv Detail & Related papers (2021-03-22T20:36:34Z) - Improving the performance of EEG decoding using anchored-STFT in
conjunction with gradient norm adversarial augmentation [0.22835610890984162]
EEG signals have a low spatial resolution and are often distorted with noise and artifacts.
Deep learning algorithms have proven to be quite efficient in learning hidden, meaningful patterns.
In this study, we proposed a novel input formation (feature extraction) method in conjunction with a novel deep learning based generative model.
arXiv Detail & Related papers (2020-11-30T11:18:06Z) - Transfer Learning for Motor Imagery Based Brain-Computer Interfaces: A
Complete Pipeline [54.73337667795997]
Transfer learning (TL) has been widely used in motor imagery (MI) based brain-computer interfaces (BCIs) to reduce the calibration effort for a new subject.
This paper proposes that TL could be considered in all three components (spatial filtering, feature engineering, and classification) of MI-based BCIs.
arXiv Detail & Related papers (2020-07-03T23:44:21Z) - Few-Shot Relation Learning with Attention for EEG-based Motor Imagery
Classification [11.873435088539459]
Brain-Computer Interfaces (BCI) based on Electroencephalography (EEG) signals have received a lot of attention.
Motor imagery (MI) data can be used to aid rehabilitation as well as in autonomous driving scenarios.
classification of MI signals is vital for EEG-based BCI systems.
arXiv Detail & Related papers (2020-03-03T02:34:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.