ClimateLLM: Efficient Weather Forecasting via Frequency-Aware Large Language Models
- URL: http://arxiv.org/abs/2502.11059v1
- Date: Sun, 16 Feb 2025 09:57:50 GMT
- Title: ClimateLLM: Efficient Weather Forecasting via Frequency-Aware Large Language Models
- Authors: Shixuan Li, Wei Yang, Peiyu Zhang, Xiongye Xiao, Defu Cao, Yuehan Qin, Xiaole Zhang, Yue Zhao, Paul Bogdan,
- Abstract summary: We propose ClimateLLM, a foundation model for weather forecasting.
It captures temporal dependencies via a cross-temporal and cross-spatial collaborative framework.
It integrates frequency decomposition with Large Language Models to strengthen spatial and temporal modeling.
- Score: 13.740208247043258
- License:
- Abstract: Weather forecasting is crucial for public safety, disaster prevention and mitigation, agricultural production, and energy management, with global relevance. Although deep learning has significantly advanced weather prediction, current methods face critical limitations: (i) they often struggle to capture both dynamic temporal dependencies and short-term abrupt changes, making extreme weather modeling difficult; (ii) they incur high computational costs due to extensive training and resource requirements; (iii) they have limited adaptability to multi-scale frequencies, leading to challenges when separating global trends from local fluctuations. To address these issues, we propose ClimateLLM, a foundation model for weather forecasting. It captures spatiotemporal dependencies via a cross-temporal and cross-spatial collaborative modeling framework that integrates Fourier-based frequency decomposition with Large Language Models (LLMs) to strengthen spatial and temporal modeling. Our framework uses a Mixture-of-Experts (MoE) mechanism that adaptively processes different frequency components, enabling efficient handling of both global signals and localized extreme events. In addition, we introduce a cross-temporal and cross-spatial dynamic prompting mechanism, allowing LLMs to incorporate meteorological patterns across multiple scales effectively. Extensive experiments on real-world datasets show that ClimateLLM outperforms state-of-the-art approaches in accuracy and efficiency, as a scalable solution for global weather forecasting.
Related papers
- A Generative Framework for Probabilistic, Spatiotemporally Coherent Downscaling of Climate Simulation [23.504915709396204]
We present a novel generative framework that uses a score-based diffusion model trained on high-resolution reanalysis data to capture the statistical properties of local weather dynamics.
We demonstrate that the model generates spatially and temporally coherent weather dynamics that align with global climate output.
arXiv Detail & Related papers (2024-12-19T19:47:35Z) - Efficient Localized Adaptation of Neural Weather Forecasting: A Case Study in the MENA Region [62.09891513612252]
We focus on limited-area modeling and train our model specifically for localized region-level downstream tasks.
We consider the MENA region due to its unique climatic challenges, where accurate localized weather forecasting is crucial for managing water resources, agriculture and mitigating the impacts of extreme weather events.
Our study aims to validate the effectiveness of integrating parameter-efficient fine-tuning (PEFT) methodologies, specifically Low-Rank Adaptation (LoRA) and its variants, to enhance forecast accuracy, as well as training speed, computational resource utilization, and memory efficiency in weather and climate modeling for specific regions.
arXiv Detail & Related papers (2024-09-11T19:31:56Z) - MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
Downscaling, a crucial task in meteorological forecasting, enables the reconstruction of high-resolution meteorological states for target regions.
Previous downscaling methods lacked tailored designs for meteorology and encountered structural limitations.
We propose a novel model called MambaDS, which enhances the utilization of multivariable correlations and topography information.
arXiv Detail & Related papers (2024-08-20T13:45:49Z) - LightWeather: Harnessing Absolute Positional Encoding to Efficient and Scalable Global Weather Forecasting [21.048535830456363]
We show that absolute positional encoding is what really works in Transformer-based weather forecasting models.
We propose LightWeather, a lightweight and effective model for station-of-based global weather forecasting.
arXiv Detail & Related papers (2024-08-19T04:23:40Z) - Probabilistic Emulation of a Global Climate Model with Spherical DYffusion [15.460280166612119]
We present the first conditional generative model that produces accurate and physically consistent global climate ensemble simulations.
Our model integrates the dynamics-informed diffusion framework (DYffusion) with the Spherical Fourier Neural Operator (SFNO) architecture.
The model achieves near gold-standard performance for climate model emulation, outperforming existing approaches and demonstrating promising ensemble skill.
arXiv Detail & Related papers (2024-06-21T00:16:55Z) - SFANet: Spatial-Frequency Attention Network for Weather Forecasting [54.470205739015434]
Weather forecasting plays a critical role in various sectors, driving decision-making and risk management.
Traditional methods often struggle to capture the complex dynamics of meteorological systems.
We propose a novel framework designed to address these challenges and enhance the accuracy of weather prediction.
arXiv Detail & Related papers (2024-05-29T08:00:15Z) - Earthfarseer: Versatile Spatio-Temporal Dynamical Systems Modeling in One Model [23.875981403451256]
EarthFarseer is a framework that combines parallel local convolutions and global Fourier-based transformer architectures.
Our proposal demonstrates strong adaptability across various convergence and datasets, with fast and better local fidelity in long time-steps predictions.
arXiv Detail & Related papers (2023-12-13T07:20:24Z) - Learning Robust Precipitation Forecaster by Temporal Frame Interpolation [65.5045412005064]
We develop a robust precipitation forecasting model that demonstrates resilience against spatial-temporal discrepancies.
Our approach has led to significant improvements in forecasting precision, culminating in our model securing textit1st place in the transfer learning leaderboard of the textitWeather4cast'23 competition.
arXiv Detail & Related papers (2023-11-30T08:22:08Z) - ClimaX: A foundation model for weather and climate [51.208269971019504]
ClimaX is a deep learning model for weather and climate science.
It can be pre-trained with a self-supervised learning objective on climate datasets.
It can be fine-tuned to address a breadth of climate and weather tasks.
arXiv Detail & Related papers (2023-01-24T23:19:01Z) - DeepClimGAN: A High-Resolution Climate Data Generator [60.59639064716545]
Earth system models (ESMs) are often used to generate future projections of climate change scenarios.
As a compromise, emulators are substantially less expensive but may not have all of the complexity of an ESM.
Here we demonstrate the use of a conditional generative adversarial network (GAN) to act as an ESM emulator.
arXiv Detail & Related papers (2020-11-23T20:13:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.