論文の概要: DEEPER Insight into Your User: Directed Persona Refinement for Dynamic Persona Modeling
- arxiv url: http://arxiv.org/abs/2502.11078v1
- Date: Sun, 16 Feb 2025 11:02:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-18 14:13:00.808671
- Title: DEEPER Insight into Your User: Directed Persona Refinement for Dynamic Persona Modeling
- Title(参考訳): DEEPER Insight into your user: Directed Persona Refinement for Dynamic Persona Modeling
- Authors: Aili Chen, Chengyu Du, Jiangjie Chen, Jinghan Xu, Yikai Zhang, Siyu Yuan, Zulong Chen, Liangyue Li, Yanghua Xiao,
- Abstract要約: 本稿では,動的ペルソナモデリングのための新しいアプローチであるDEEPERを提案する。
10ドメインにわたる4800人のユーザによる動的ペルソナモデリングの実験は、DEEPERの優れたペルソナ最適化能力を強調している。
- 参考スコア(独自算出の注目度): 38.18345641589625
- License:
- Abstract: To advance personalized applications such as recommendation systems and user behavior prediction, recent research increasingly adopts large language models (LLMs) for human -readable persona modeling. In dynamic real -world scenarios, effective persona modeling necessitates leveraging streaming behavior data to continually optimize user personas. However, existing methods -whether regenerating personas or incrementally extending them with new behaviors -often fail to achieve sustained improvements in persona quality or future behavior prediction accuracy. To address this, we propose DEEPER, a novel approach for dynamic persona modeling that enables continual persona optimization. Specifically, we enhance the model's direction -search capability through an iterative reinforcement learning framework, allowing it to automatically identify effective update directions and optimize personas using discrepancies between user behaviors and model predictions. Extensive experiments on dynamic persona modeling involving 4800 users across 10 domains highlight the superior persona optimization capabilities of DEEPER, delivering an impressive 32.2% average reduction in user behavior prediction error over four update rounds -outperforming the best baseline by a remarkable 22.92%.
- Abstract(参考訳): 近年,リコメンデーションシステムやユーザ行動予測などのパーソナライズされた応用を推し進めるために,人間可読型ペルソナモデリングに大規模言語モデル(LLM)を採用する研究が増えている。
動的実世界のシナリオでは、効果的なペルソナモデリングは、ユーザのペルソナを継続的に最適化するためにストリーミング動作データを活用する必要がある。
しかし、既存の手法(ペルソナを再生するか、新たな振る舞いで漸進的に拡張するか)は、ペルソナの品質や将来の行動予測精度の持続的な改善を達成できないことが多い。
そこで本研究では,動的ペルソナモデリングのための新しいアプローチであるDEEPERを提案する。
具体的には、反復的な強化学習フレームワークを通じてモデルの方向探索機能を強化し、効果的な更新方向を自動的に識別し、ユーザ行動とモデル予測の相違を利用してペルソナを最適化する。
10ドメインにわたる4800人のユーザによる動的ペルソナモデリングに関する大規模な実験では、DEEPERの優れたペルソナ最適化能力が強調され、4回の更新ラウンドで平均32.2%のユーザ動作予測エラーが、驚くべき22.92%で最高のベースラインを上回った。
関連論文リスト
- MotionRL: Align Text-to-Motion Generation to Human Preferences with Multi-Reward Reinforcement Learning [99.09906827676748]
我々は、テキスト・ツー・モーション生成タスクを最適化するために、Multi-Reward Reinforcement Learning(RL)を利用する最初のアプローチであるMotionRLを紹介する。
我々の新しいアプローチは、人間の知覚モデルに関する知識以前の人間の嗜好に基づいて、強化学習を用いて運動生成体を微調整する。
さらに、MotionRLは、テキストのアテンデンス、モーションクオリティ、人間の好みの最適性を近似する、新しい多目的最適化戦略を導入している。
論文 参考訳(メタデータ) (2024-10-09T03:27:14Z) - USE: Dynamic User Modeling with Stateful Sequence Models [26.74966828348815]
User Stateful Embedding (USE)は、徹底的な再処理を必要とせずに、ユーザ埋め込みを生成する。
我々は,次世代の予測の限界を超越するために,将来のW行動予測という新たな訓練目標を導入する。
静的(固定されたユーザ行動シーケンス)および動的(定期的に更新されたユーザ行動シーケンス)設定の両方で、Snapchatユーザーの行動ログを使用して、8つの下流タスクで実験を行う。
論文 参考訳(メタデータ) (2024-03-20T07:05:19Z) - PUNR: Pre-training with User Behavior Modeling for News Recommendation [26.349183393252115]
ニュースレコメンデーションは、ユーザーの行動に基づいてクリック行動を予測することを目的としている。
ユーザの表現を効果的にモデル化する方法が、望ましいニュースを推奨する鍵である。
本研究では,ユーザ行動マスキングとユーザ行動生成という2つのタスクを備えた教師なし事前学習パラダイムを提案する。
論文 参考訳(メタデータ) (2023-04-25T08:03:52Z) - Latent User Intent Modeling for Sequential Recommenders [92.66888409973495]
逐次リコメンデータモデルは、プラットフォーム上での氏のインタラクション履歴に基づいて、ユーザが次に対話する可能性のあるアイテムを予測することを学習する。
しかし、ほとんどのシーケンシャルなレコメンデータは、ユーザの意図に対する高いレベルの理解を欠いている。
したがって、インテントモデリングはユーザー理解と長期ユーザーエクスペリエンスの最適化に不可欠である。
論文 参考訳(メタデータ) (2022-11-17T19:00:24Z) - Optimal Behavior Prior: Data-Efficient Human Models for Improved
Human-AI Collaboration [0.5524804393257919]
人間のモデルに最適な振る舞いを先行して使用すると、これらのモデルの方がはるかにデータ効率が良くなることを示す。
また、これらの改良された人間モデルを使用することで、人間とAIのコラボレーションのパフォーマンスが向上することを示す。
論文 参考訳(メタデータ) (2022-11-03T06:10:22Z) - PinnerFormer: Sequence Modeling for User Representation at Pinterest [60.335384724891746]
我々は、ユーザの将来的なエンゲージメントを予測するためにトレーニングされたユーザ表現であるPinnerFormerを紹介する。
従来のアプローチとは異なり、新しい密集した全アクション損失を通じて、モデリングをバッチインフラストラクチャに適応させます。
その結果,1日に1回発生するバッチユーザ埋め込みと,ユーザがアクションを行うたびに発生するリアルタイムユーザ埋め込みとの間には,大きなギャップがあることが判明した。
論文 参考訳(メタデータ) (2022-05-09T18:26:51Z) - Preference Enhanced Social Influence Modeling for Network-Aware Cascade
Prediction [59.221668173521884]
本稿では,ユーザの嗜好モデルを強化することで,カスケードサイズ予測を促進する新しいフレームワークを提案する。
エンド・ツー・エンドの手法により,ユーザの情報拡散プロセスがより適応的で正確になる。
論文 参考訳(メタデータ) (2022-04-18T09:25:06Z) - Generative Adversarial Reward Learning for Generalized Behavior Tendency
Inference [71.11416263370823]
ユーザの行動嗜好モデルのための生成的逆強化学習を提案する。
我々のモデルは,差別的アクター批判ネットワークとWasserstein GANに基づいて,ユーザの行動から報酬を自動的に学習することができる。
論文 参考訳(メタデータ) (2021-05-03T13:14:25Z) - Reinforcement Learning Beyond Expectation [11.428014000851535]
累積予測理論 (cumulative prospect theory, cpt) は、人間が利益と損失を異なる視点で見る傾向をモデル化することが実証的に示されているパラダイムである。
本稿では,自律エージェントが未知の環境で行動を学ぶ必要がある環境について考察する。
エージェントに人間のユーザーの行動を密接に模倣する能力を与えるために、我々はCPTベースのコストを最適化する。
論文 参考訳(メタデータ) (2021-03-29T20:35:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。