論文の概要: Improving Similar Case Retrieval Ranking Performance By Revisiting RankSVM
- arxiv url: http://arxiv.org/abs/2502.11131v1
- Date: Sun, 16 Feb 2025 13:59:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-18 14:12:54.392488
- Title: Improving Similar Case Retrieval Ranking Performance By Revisiting RankSVM
- Title(参考訳): RankSVMの再検討による類似ケース検索ランキングのパフォーマンス向上
- Authors: Yuqi Liu, Yan Zheng,
- Abstract要約: 同様のケース検索は、最も重要な法的AIタスクの1つである。
我々は、言語モデルではなく、学習の観点から、現在のモデルのランク付け性能を改善しようとしている。
- 参考スコア(独自算出の注目度): 14.653063794797013
- License:
- Abstract: Given the rapid development of Legal AI, a lot of attention has been paid to one of the most important legal AI tasks--similar case retrieval, especially with language models to use. In our paper, however, we try to improve the ranking performance of current models from the perspective of learning to rank instead of language models. Specifically, we conduct experiments using a pairwise method--RankSVM as the classifier to substitute a fully connected layer, combined with commonly used language models on similar case retrieval datasets LeCaRDv1 and LeCaRDv2. We finally come to the conclusion that RankSVM could generally help improve the retrieval performance on the LeCaRDv1 and LeCaRDv2 datasets compared with original classifiers by optimizing the precise ranking. It could also help mitigate overfitting owing to class imbalance. Our code is available in https://github.com/liuyuqi123study/RankSVM_for_SLR
- Abstract(参考訳): 本稿では,Lawal AIの急速な発展に伴い,特に言語モデルと類似したケース検索に注目が集まっている。しかし,本論文では,言語モデルではなく,学習の観点から現在のモデルのランク付け性能を向上しようと試みている。具体的には,LankSVMを,類似のケース検索データセットであるLeCaRDv1とLeCaRDv2でよく使用される言語モデルと組み合わせて,完全に連結されたレイヤを置き換えるための,ペアワイドなメソッド-RankSVMを用いた実験を行っている。
RankSVMはLCaRDv1とLeCaRDv2のデータセットの検索性能を、正確なランキングを最適化することで、元の分類器と比較して改善できるという結論に達した。
これはまた、クラス不均衡による過度な適合を緩和するのに役立ちます。
私たちのコードはhttps://github.com/liuyuqi123study/RankSVM_for_SLRで利用可能です。
関連論文リスト
- Methods for Class-Imbalanced Learning with Support Vector Machines: A Review and an Empirical Evaluation [22.12895887111828]
クラス不均衡学習に関して,SVMに基づくモデルの階層的分類を導入する。
ベンチマーク不均衡データセットを用いて,各カテゴリの各種SVMモデルの性能を比較した。
以上の結果から,データ前処理の要求がないため,アルゴリズム手法は時間がかかりにくいが,再サンプリング手法とアルゴリズム手法を併用した融合方式は,一般に最善を尽くしていることがわかった。
論文 参考訳(メタデータ) (2024-06-05T15:55:08Z) - A Hard-to-Beat Baseline for Training-free CLIP-based Adaptation [121.0693322732454]
対照的に、CLIP(Contrastive Language- Image Pretraining)はその目覚ましいゼロショット能力で人気を集めている。
近年の研究では、下流タスクにおけるCLIPの性能を高めるための効率的な微調整手法の開発に焦点が当てられている。
従来のアルゴリズムであるガウス判別分析(GDA)を再検討し,CLIPの下流分類に適用する。
論文 参考訳(メタデータ) (2024-02-06T15:45:27Z) - Self-Supervised Class Incremental Learning [51.62542103481908]
既存のクラスインクリメンタルラーニング(CIL)手法は、データラベルに敏感な教師付き分類フレームワークに基づいている。
新しいクラスデータに基づいて更新する場合、それらは破滅的な忘れがちである。
本稿では,SSCILにおける自己指導型表現学習のパフォーマンスを初めて考察する。
論文 参考訳(メタデータ) (2021-11-18T06:58:19Z) - No Fear of Heterogeneity: Classifier Calibration for Federated Learning
with Non-IID Data [78.69828864672978]
実世界のフェデレーションシステムにおける分類モデルのトレーニングにおける中心的な課題は、非IIDデータによる学習である。
このアルゴリズムは, 近似されたssian混合モデルからサンプリングした仮想表現を用いて分類器を調整する。
実験の結果,CIFAR-10,CIFAR-100,CINIC-10など,一般的なフェデレーション学習ベンチマークにおけるCCVRの現状が示された。
論文 参考訳(メタデータ) (2021-06-09T12:02:29Z) - Improving Calibration for Long-Tailed Recognition [68.32848696795519]
このようなシナリオにおけるキャリブレーションとパフォーマンスを改善する2つの方法を提案します。
異なるサンプルによるデータセットバイアスに対して,シフトバッチ正規化を提案する。
提案手法は,複数の長尾認識ベンチマークデータセットに新しいレコードをセットする。
論文 参考訳(メタデータ) (2021-04-01T13:55:21Z) - One vs Previous and Similar Classes Learning -- A Comparative Study [2.208242292882514]
この研究は、トレーニングされたモデルをスクラッチから再トレーニングすることなく更新できる3つの学習パラダイムを提案する。
その結果、提案されたパラダイムは更新時のベースラインよりも高速であり、そのうち2つはスクラッチからのトレーニング、特に大規模なデータセットでも高速であることが示された。
論文 参考訳(メタデータ) (2021-01-05T00:28:38Z) - Beyond Triplet Loss: Meta Prototypical N-tuple Loss for Person
Re-identification [118.72423376789062]
マルチクラス分類損失(N-tuple loss)を導入し、クエリごとの最適化のために複数の(N)インスタンスを共同で検討する。
マルチクラス分類を組み込んだモデルにより,ベンチマーク対象のReIDデータセット上での最先端性能を実現する。
論文 参考訳(メタデータ) (2020-06-08T23:34:08Z) - Pairwise Similarity Knowledge Transfer for Weakly Supervised Object
Localization [53.99850033746663]
弱教師付き画像ラベルを持つ対象クラスにおける局所化モデル学習の問題点について検討する。
本研究では,対象関数のみの学習は知識伝達の弱い形態であると主張する。
COCOおよびILSVRC 2013検出データセットの実験では、ペアワイズ類似度関数を含むことにより、ローカライズモデルの性能が大幅に向上することが示された。
論文 参考訳(メタデータ) (2020-03-18T17:53:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。