Solving Online Resource-Constrained Scheduling for Follow-Up Observation in Astronomy: a Reinforcement Learning Approach
- URL: http://arxiv.org/abs/2502.11134v1
- Date: Sun, 16 Feb 2025 14:01:12 GMT
- Title: Solving Online Resource-Constrained Scheduling for Follow-Up Observation in Astronomy: a Reinforcement Learning Approach
- Authors: Yajie Zhang, Ce Yu, Chao Sun, Jizeng Wei, Junhan Ju, Shanjiang Tang,
- Abstract summary: This paper presents ROARS, a reinforcement learning approach for online astronomical resource-constrained scheduling.
To capture the structure of the astronomical observation scheduling, we depict every schedule using a directed acyclic graph (DAG)
Deep reinforcement learning is used to learn a policy that can improve the feasible solution by iteratively local rewriting until convergence.
- Score: 4.027575411413831
- License:
- Abstract: In the astronomical observation field, determining the allocation of observation resources of the telescope array and planning follow-up observations for targets of opportunity (ToOs) are indispensable components of astronomical scientific discovery. This problem is computationally challenging, given the online observation setting and the abundance of time-varying factors that can affect whether an observation can be conducted. This paper presents ROARS, a reinforcement learning approach for online astronomical resource-constrained scheduling. To capture the structure of the astronomical observation scheduling, we depict every schedule using a directed acyclic graph (DAG), illustrating the dependency of timing between different observation tasks within the schedule. Deep reinforcement learning is used to learn a policy that can improve the feasible solution by iteratively local rewriting until convergence. It can solve the challenge of obtaining a complete solution directly from scratch in astronomical observation scenarios, due to the high computational complexity resulting from numerous spatial and temporal constraints. A simulation environment is developed based on real-world scenarios for experiments, to evaluate the effectiveness of our proposed scheduling approach. The experimental results show that ROARS surpasses 5 popular heuristics, adapts to various observation scenarios and learns effective strategies with hindsight.
Related papers
- Earth Observation Satellite Scheduling with Graph Neural Networks [1.1684839631276702]
This paper presents a new technique for selecting and scheduling observations based on Graph Neural Networks (GNNs) and Deep Reinforcement Learning (DRL)
Our simulations show that it is able to learn on small problem instances and generalize to larger real-world instances, with very competitive performance compared to traditional approaches.
arXiv Detail & Related papers (2024-08-27T13:10:26Z) - Real-time gravitational-wave inference for binary neutron stars using machine learning [71.29593576787549]
We present a machine learning framework that performs complete BNS inference in just one second without making any approximations.
Our approach enhances multi-messenger observations by providing (i) accurate localization even before the merger; (ii) improved localization precision by $sim30%$ compared to approximate low-latency methods; and (iii) detailed information on luminosity distance, inclination, and masses.
arXiv Detail & Related papers (2024-07-12T18:00:02Z) - SFANet: Spatial-Frequency Attention Network for Weather Forecasting [54.470205739015434]
Weather forecasting plays a critical role in various sectors, driving decision-making and risk management.
Traditional methods often struggle to capture the complex dynamics of meteorological systems.
We propose a novel framework designed to address these challenges and enhance the accuracy of weather prediction.
arXiv Detail & Related papers (2024-05-29T08:00:15Z) - Self-Driving Telescopes: Autonomous Scheduling of Astronomical
Observation Campaigns with Offline Reinforcement Learning [0.6976905094072174]
We use simulated data to test and compare multiple implementations of a Deep Q-Network (DQN) for the task of optimizing the schedule of observations from the Stone Edge Observatory (SEO)
We show that DQNs can achieve an average reward of 87%+-6% of the maximum achievable reward in each state on the test set.
This is the first comparison of offline RL algorithms for a particular astronomical challenge and the first open-source framework for performing such a comparison and assessment task.
arXiv Detail & Related papers (2023-11-29T21:23:30Z) - Transfer RL across Observation Feature Spaces via Model-Based
Regularization [9.660642248872973]
In many reinforcement learning (RL) applications, the observation space is specified by human developers and restricted by physical realizations.
We propose a novel algorithm which extracts the latent-space dynamics in the source task, and transfers the dynamics model to the target task.
Our algorithm works for drastic changes of observation space without any inter-task mapping or any prior knowledge of the target task.
arXiv Detail & Related papers (2022-01-01T22:41:19Z) - Building Autocorrelation-Aware Representations for Fine-Scale
Spatiotemporal Prediction [1.2862507359003323]
We present a novel deep learning architecture that incorporates theories of spatial statistics into neural networks.
DeepLATTE contains an autocorrelation-guided semi-supervised learning strategy to enforce both local autocorrelation patterns and global autocorrelation trends.
We conduct a demonstration of DeepLATTE using publicly available data for an important public health topic, air quality prediction in a well-fitting, complex physical environment.
arXiv Detail & Related papers (2021-12-10T03:21:19Z) - Provable RL with Exogenous Distractors via Multistep Inverse Dynamics [85.52408288789164]
Real-world applications of reinforcement learning (RL) require the agent to deal with high-dimensional observations such as those generated from a megapixel camera.
Prior work has addressed such problems with representation learning, through which the agent can provably extract endogenous, latent state information from raw observations.
However, such approaches can fail in the presence of temporally correlated noise in the observations.
arXiv Detail & Related papers (2021-10-17T15:21:27Z) - Seeing Differently, Acting Similarly: Imitation Learning with
Heterogeneous Observations [126.78199124026398]
In many real-world imitation learning tasks, the demonstrator and the learner have to act in different but full observation spaces.
In this work, we model the above learning problem as Heterogeneous Observations Learning (HOIL)
We propose the Importance Weighting with REjection (IWRE) algorithm based on the techniques of importance-weighting, learning with rejection, and active querying to solve the key challenge of occupancy measure matching.
arXiv Detail & Related papers (2021-06-17T05:44:04Z) - Reinforcement Learning for Low-Thrust Trajectory Design of
Interplanetary Missions [77.34726150561087]
This paper investigates the use of reinforcement learning for the robust design of interplanetary trajectories in presence of severe disturbances.
An open-source implementation of the state-of-the-art algorithm Proximal Policy Optimization is adopted.
The resulting Guidance and Control Network provides both a robust nominal trajectory and the associated closed-loop guidance law.
arXiv Detail & Related papers (2020-08-19T15:22:15Z) - A Maximum Independent Set Method for Scheduling Earth Observing
Satellite Constellations [41.013477422930755]
This paper introduces a new approach for solving the satellite scheduling problem by generating an infeasibility-based graph representation of the problem.
It is tested on a scenarios of up to 10,000 requested imaging locations for the Skysat constellation of optical satellites as well as simulated constellations of up to 24 satellites.
arXiv Detail & Related papers (2020-08-15T19:32:21Z) - Bottom-up mechanism and improved contract net protocol for the dynamic
task planning of heterogeneous Earth observation resources [61.75759893720484]
Earth observation resources are becoming increasingly indispensable in disaster relief, damage assessment and related domains.
Many unpredicted factors, such as the change of observation task requirements, to the occurring of bad weather and resource failures, may cause the scheduled observation scheme to become infeasible.
A bottom-up distributed coordinated framework together with an improved contract net are proposed to facilitate the dynamic task replanning for heterogeneous Earth observation resources.
arXiv Detail & Related papers (2020-07-13T03:51:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.