Cognitive Neural Architecture Search Reveals Hierarchical Entailment
- URL: http://arxiv.org/abs/2502.11141v1
- Date: Sun, 16 Feb 2025 14:13:04 GMT
- Title: Cognitive Neural Architecture Search Reveals Hierarchical Entailment
- Authors: Lukas Kuhn, Sari Saba-Sadiya, Gemma Roig,
- Abstract summary: Recent research has suggested that the brain is more shallow than previously thought.
We demonstrate that optimizing convolutional network architectures for brain-alignment via evolutionary neural architecture search results in models with clear representational hierarchies.
- Score: 7.649444920992484
- License:
- Abstract: Recent research has suggested that the brain is more shallow than previously thought, challenging the traditionally assumed hierarchical structure of the ventral visual pathway. Here, we demonstrate that optimizing convolutional network architectures for brain-alignment via evolutionary neural architecture search results in models with clear representational hierarchies. Despite having random weights, the identified models achieve brain-alignment scores surpassing even those of pretrained classification models - as measured by both regression and representational similarity analysis. Furthermore, through traditional supervised training, architectures optimized for alignment with late ventral regions become competitive classification models. These findings suggest that hierarchical structure is a fundamental mechanism of primate visual processing. Finally, this work demonstrates the potential of neural architecture search as a framework for computational cognitive neuroscience research that could reduce the field's reliance on manually designed convolutional networks.
Related papers
- Structure of Artificial Neural Networks -- Empirical Investigations [0.0]
Within one decade, Deep Learning overtook the dominating solution methods of countless problems of artificial intelligence.
With a formal definition for structures of neural networks, neural architecture search problems and solution methods can be formulated under a common framework.
Does structure make a difference or can it be chosen arbitrarily?
arXiv Detail & Related papers (2024-10-12T16:13:28Z) - Emergent Language Symbolic Autoencoder (ELSA) with Weak Supervision to Model Hierarchical Brain Networks [0.12075823996747355]
Brain networks display a hierarchical organization, a complexity that poses a challenge for existing deep learning models.
We propose a symbolic autoencoder informed by weak supervision and an Emergent Language (EL) framework.
Our innovation includes a generalized hierarchical loss function designed to ensure that both sentences and images accurately reflect the hierarchical structure of functional brain networks.
arXiv Detail & Related papers (2024-04-15T13:51:05Z) - Neural Architecture Retrieval [27.063268631346713]
We define a new problem Neural Architecture Retrieval which retrieves a set of existing neural architectures with similar designs to the query neural architecture.
Existing graph pre-training strategies cannot address the computational graph in neural architectures due to the graph size and motifs.
We introduce multi-level contrastive learning to achieve accurate graph representation learning.
arXiv Detail & Related papers (2023-07-16T01:56:41Z) - Brain Cortical Functional Gradients Predict Cortical Folding Patterns
via Attention Mesh Convolution [51.333918985340425]
We develop a novel attention mesh convolution model to predict cortical gyro-sulcal segmentation maps on individual brains.
Experiments show that the prediction performance via our model outperforms other state-of-the-art models.
arXiv Detail & Related papers (2022-05-21T14:08:53Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - On the Exploitation of Neuroevolutionary Information: Analyzing the Past
for a More Efficient Future [60.99717891994599]
We propose an approach that extracts information from neuroevolutionary runs, and use it to build a metamodel.
We inspect the best structures found during neuroevolutionary searches of generative adversarial networks with varying characteristics.
arXiv Detail & Related papers (2021-05-26T20:55:29Z) - Towards a Predictive Processing Implementation of the Common Model of
Cognition [79.63867412771461]
We describe an implementation of the common model of cognition grounded in neural generative coding and holographic associative memory.
The proposed system creates the groundwork for developing agents that learn continually from diverse tasks as well as model human performance at larger scales.
arXiv Detail & Related papers (2021-05-15T22:55:23Z) - Neural Architecture Search based on Cartesian Genetic Programming Coding
Method [6.519170476143571]
We propose an evolutionary approach of NAS based on CGP, called CGPNAS, to solve sentence classification task.
The experimental results show that the searched architectures are comparable with the performance of human-designed architectures.
arXiv Detail & Related papers (2021-03-12T09:51:03Z) - NAS-DIP: Learning Deep Image Prior with Neural Architecture Search [65.79109790446257]
Recent work has shown that the structure of deep convolutional neural networks can be used as a structured image prior.
We propose to search for neural architectures that capture stronger image priors.
We search for an improved network by leveraging an existing neural architecture search algorithm.
arXiv Detail & Related papers (2020-08-26T17:59:36Z) - A Semi-Supervised Assessor of Neural Architectures [157.76189339451565]
We employ an auto-encoder to discover meaningful representations of neural architectures.
A graph convolutional neural network is introduced to predict the performance of architectures.
arXiv Detail & Related papers (2020-05-14T09:02:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.