VLMs as GeoGuessr Masters: Exceptional Performance, Hidden Biases, and Privacy Risks
- URL: http://arxiv.org/abs/2502.11163v1
- Date: Sun, 16 Feb 2025 15:28:34 GMT
- Title: VLMs as GeoGuessr Masters: Exceptional Performance, Hidden Biases, and Privacy Risks
- Authors: Jingyuan Huang, Jen-tse Huang, Ziyi Liu, Xiaoyuan Liu, Wenxuan Wang, Jieyu Zhao,
- Abstract summary: Visual-Language Models (VLMs) have shown remarkable performance across various tasks.
We introduce a benchmark dataset consisting of 1,200 images paired with detailed geographic metadata.
We find that while these models demonstrate the ability to recognize geographic information from images, they exhibit significant regional biases.
- Score: 44.69950059419091
- License:
- Abstract: Visual-Language Models (VLMs) have shown remarkable performance across various tasks, particularly in recognizing geographic information from images. However, significant challenges remain, including biases and privacy concerns. To systematically address these issues in the context of geographic information recognition, we introduce a benchmark dataset consisting of 1,200 images paired with detailed geographic metadata. Evaluating four VLMs, we find that while these models demonstrate the ability to recognize geographic information from images, achieving up to $53.8\%$ accuracy in city prediction, they exhibit significant regional biases. Specifically, performance is substantially higher for economically developed and densely populated regions compared to less developed ($-12.5\%$) and sparsely populated ($-17.0\%$) areas. Moreover, the models exhibit regional biases, frequently overpredicting certain locations; for instance, they consistently predict Sydney for images taken in Australia. The strong performance of VLMs also raises privacy concerns, particularly for users who share images online without the intent of being identified. Our code and dataset are publicly available at https://github.com/uscnlp-lime/FairLocator.
Related papers
- Evaluating Precise Geolocation Inference Capabilities of Vision Language Models [0.0]
This paper introduces a benchmark dataset collected from Google Street View that represents its global distribution of coverage.
Foundation models are evaluated on single-image geolocation inference, with many achieving median distance errors of 300 km.
We further evaluate VLM "agents" with access to supplemental tools, observing up to a 30.6% decrease in distance error.
arXiv Detail & Related papers (2025-02-20T09:59:28Z) - GEOBench-VLM: Benchmarking Vision-Language Models for Geospatial Tasks [84.86699025256705]
We present GEOBench-VLM, a benchmark specifically designed to evaluate Vision-Language Models (VLMs) on geospatial tasks.
Our benchmark features over 10,000 manually verified instructions and covers a diverse set of variations in visual conditions, object type, and scale.
We evaluate several state-of-the-art VLMs to assess their accuracy within the geospatial context.
arXiv Detail & Related papers (2024-11-28T18:59:56Z) - Image-Based Geolocation Using Large Vision-Language Models [19.071551941682063]
We introduce tool, an innovative framework that significantly enhances image-based geolocation accuracy.
tool employs a systematic chain-of-thought (CoT) approach, mimicking human geoguessing strategies.
It achieves an impressive average score of 4550.5 in the GeoGuessr game, with an 85.37% win rate, and delivers highly precise geolocation predictions.
arXiv Detail & Related papers (2024-08-18T13:39:43Z) - Granular Privacy Control for Geolocation with Vision Language Models [36.3455665044992]
We develop a new benchmark, GPTGeoChat, to test the ability of Vision Language Models to moderate geolocation dialogues with users.
We collect a set of 1,000 image geolocation conversations between in-house annotators and GPT-4v.
We evaluate the ability of various VLMs to moderate GPT-4v geolocation conversations by determining when too much location information has been revealed.
arXiv Detail & Related papers (2024-07-06T04:06:55Z) - Regional biases in image geolocation estimation: a case study with the SenseCity Africa dataset [0.0]
We apply a state-of-the-art image geolocation estimation model (ISNs) to a crowd-sourced dataset of geolocated images from the African continent (SCA100)
Our findings show that the ISNs model tends to over-predict image locations in high-income countries of the Western world.
Our results suggest that using IM2GPS3k as a training set and benchmark for image geolocation estimation and other computer vision models overlooks its potential application in the African context.
arXiv Detail & Related papers (2024-04-03T08:27:24Z) - GeoCLIP: Clip-Inspired Alignment between Locations and Images for
Effective Worldwide Geo-localization [61.10806364001535]
Worldwide Geo-localization aims to pinpoint the precise location of images taken anywhere on Earth.
Existing approaches divide the globe into discrete geographic cells, transforming the problem into a classification task.
We propose GeoCLIP, a novel CLIP-inspired Image-to-GPS retrieval approach that enforces alignment between the image and its corresponding GPS locations.
arXiv Detail & Related papers (2023-09-27T20:54:56Z) - GeoNet: Benchmarking Unsupervised Adaptation across Geographies [71.23141626803287]
We study the problem of geographic robustness and make three main contributions.
First, we introduce a large-scale dataset GeoNet for geographic adaptation.
Second, we hypothesize that the major source of domain shifts arise from significant variations in scene context.
Third, we conduct an extensive evaluation of several state-of-the-art unsupervised domain adaptation algorithms and architectures.
arXiv Detail & Related papers (2023-03-27T17:59:34Z) - Geographic and Geopolitical Biases of Language Models [43.62238334380897]
We propose an approach to study the geographic bias (and knowledge) present in pretrained language models (PLMs)
Our findings suggest PLMs' representations map surprisingly well to the physical world in terms of country-to-country associations.
Last, we explain how large PLMs despite exhibiting notions of geographical proximity, over-amplify geopoliticalitism at inference time.
arXiv Detail & Related papers (2022-12-20T16:32:54Z) - Broaden the Vision: Geo-Diverse Visual Commonsense Reasoning [49.04866469947569]
We construct a Geo-Diverse Visual Commonsense Reasoning dataset (GD-VCR) to test vision-and-language models' ability to understand cultural and geo-location-specific commonsense.
We find that the performance of both models for non-Western regions including East Asia, South Asia, and Africa is significantly lower than that for Western region.
arXiv Detail & Related papers (2021-09-14T17:52:55Z) - PGL: Prior-Guided Local Self-supervised Learning for 3D Medical Image
Segmentation [87.50205728818601]
We propose a PriorGuided Local (PGL) self-supervised model that learns the region-wise local consistency in the latent feature space.
Our PGL model learns the distinctive representations of local regions, and hence is able to retain structural information.
arXiv Detail & Related papers (2020-11-25T11:03:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.