Evaluating Precise Geolocation Inference Capabilities of Vision Language Models
- URL: http://arxiv.org/abs/2502.14412v1
- Date: Thu, 20 Feb 2025 09:59:28 GMT
- Title: Evaluating Precise Geolocation Inference Capabilities of Vision Language Models
- Authors: Neel Jay, Hieu Minh Nguyen, Trung Dung Hoang, Jacob Haimes,
- Abstract summary: This paper introduces a benchmark dataset collected from Google Street View that represents its global distribution of coverage.
Foundation models are evaluated on single-image geolocation inference, with many achieving median distance errors of 300 km.
We further evaluate VLM "agents" with access to supplemental tools, observing up to a 30.6% decrease in distance error.
- Score: 0.0
- License:
- Abstract: The prevalence of Vision-Language Models (VLMs) raises important questions about privacy in an era where visual information is increasingly available. While foundation VLMs demonstrate broad knowledge and learned capabilities, we specifically investigate their ability to infer geographic location from previously unseen image data. This paper introduces a benchmark dataset collected from Google Street View that represents its global distribution of coverage. Foundation models are evaluated on single-image geolocation inference, with many achieving median distance errors of <300 km. We further evaluate VLM "agents" with access to supplemental tools, observing up to a 30.6% decrease in distance error. Our findings establish that modern foundation VLMs can act as powerful image geolocation tools, without being specifically trained for this task. When coupled with increasing accessibility of these models, our findings have greater implications for online privacy. We discuss these risks, as well as future work in this area.
Related papers
- Image-based Geo-localization for Robotics: Are Black-box Vision-Language Models there yet? [25.419763184667985]
Vision-Language models (VLMs) offer exciting opportunities for robotic applications involving image geo-localization.
Recent research works have focused on using a VLM as embeddings extractor for geo-localization.
This paper investigates the potential of some of the state-of-the-art VLMs as stand-alone, zero-shot geo-localization systems.
arXiv Detail & Related papers (2025-01-28T13:46:01Z) - GEOBench-VLM: Benchmarking Vision-Language Models for Geospatial Tasks [84.86699025256705]
We present GEOBench-VLM, a benchmark specifically designed to evaluate Vision-Language Models (VLMs) on geospatial tasks.
Our benchmark features over 10,000 manually verified instructions and covers a diverse set of variations in visual conditions, object type, and scale.
We evaluate several state-of-the-art VLMs to assess their accuracy within the geospatial context.
arXiv Detail & Related papers (2024-11-28T18:59:56Z) - Swarm Intelligence in Geo-Localization: A Multi-Agent Large Vision-Language Model Collaborative Framework [51.26566634946208]
We introduce smileGeo, a novel visual geo-localization framework.
By inter-agent communication, smileGeo integrates the inherent knowledge of these agents with additional retrieved information.
Results show that our approach significantly outperforms current state-of-the-art methods.
arXiv Detail & Related papers (2024-08-21T03:31:30Z) - Image-Based Geolocation Using Large Vision-Language Models [19.071551941682063]
We introduce tool, an innovative framework that significantly enhances image-based geolocation accuracy.
tool employs a systematic chain-of-thought (CoT) approach, mimicking human geoguessing strategies.
It achieves an impressive average score of 4550.5 in the GeoGuessr game, with an 85.37% win rate, and delivers highly precise geolocation predictions.
arXiv Detail & Related papers (2024-08-18T13:39:43Z) - Granular Privacy Control for Geolocation with Vision Language Models [36.3455665044992]
We develop a new benchmark, GPTGeoChat, to test the ability of Vision Language Models to moderate geolocation dialogues with users.
We collect a set of 1,000 image geolocation conversations between in-house annotators and GPT-4v.
We evaluate the ability of various VLMs to moderate GPT-4v geolocation conversations by determining when too much location information has been revealed.
arXiv Detail & Related papers (2024-07-06T04:06:55Z) - Towards Vision-Language Geo-Foundation Model: A Survey [65.70547895998541]
Vision-Language Foundation Models (VLFMs) have made remarkable progress on various multimodal tasks.
This paper thoroughly reviews VLGFMs, summarizing and analyzing recent developments in the field.
arXiv Detail & Related papers (2024-06-13T17:57:30Z) - GeoReasoner: Geo-localization with Reasoning in Street Views using a Large Vision-Language Model [6.135404769437841]
This work tackles the problem of geo-localization with a new paradigm using a large vision-language model (LVLM)
Existing street-view datasets often contain numerous low-quality images lacking visual clues, and lack any reasoning inference.
To address the data-quality issue, we devise a CLIP-based network to quantify the degree of street-view images being locatable.
To enhance reasoning inference, we integrate external knowledge obtained from real geo-localization games, tapping into valuable human inference capabilities.
arXiv Detail & Related papers (2024-06-03T18:08:56Z) - SpatialVLM: Endowing Vision-Language Models with Spatial Reasoning
Capabilities [59.39858959066982]
understanding and reasoning about spatial relationships is a fundamental capability for Visual Question Answering (VQA) and robotics.
We develop an automatic 3D spatial VQA data generation framework that scales up to 2 billion VQA examples on 10 million real-world images.
By training a VLM on such data, we significantly enhance its ability on both qualitative and quantitative spatial VQA.
arXiv Detail & Related papers (2024-01-22T18:01:01Z) - GeoLLM: Extracting Geospatial Knowledge from Large Language Models [49.20315582673223]
We present GeoLLM, a novel method that can effectively extract geospatial knowledge from large language models.
We demonstrate the utility of our approach across multiple tasks of central interest to the international community, including the measurement of population density and economic livelihoods.
Our experiments reveal that LLMs are remarkably sample-efficient, rich in geospatial information, and robust across the globe.
arXiv Detail & Related papers (2023-10-10T00:03:23Z) - Semi-supervised Learning from Street-View Images and OpenStreetMap for
Automatic Building Height Estimation [59.6553058160943]
We propose a semi-supervised learning (SSL) method of automatically estimating building height from Mapillary SVI and OpenStreetMap data.
The proposed method leads to a clear performance boosting in estimating building heights with a Mean Absolute Error (MAE) around 2.1 meters.
The preliminary result is promising and motivates our future work in scaling up the proposed method based on low-cost VGI data.
arXiv Detail & Related papers (2023-07-05T18:16:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.