論文の概要: Transfer Learning of CATE with Kernel Ridge Regression
- arxiv url: http://arxiv.org/abs/2502.11331v1
- Date: Mon, 17 Feb 2025 01:07:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-18 14:14:09.798835
- Title: Transfer Learning of CATE with Kernel Ridge Regression
- Title(参考訳): カーネルリッジ回帰を用いたCATEの伝達学習
- Authors: Seok-Jin Kim, Hongjie Liu, Molei Liu, Kaizheng Wang,
- Abstract要約: カーネルリッジ回帰(KRR)を用いた条件平均処理効果(CATE)の重畳適応変換学習法を提案する。
我々は, 弱い重なり合いとCATE関数の複雑さの両方に対する適応性を強調した, 急激な非漸近的MSE境界による手法の理論的正当性を提供する。
- 参考スコア(独自算出の注目度): 4.588222946914528
- License:
- Abstract: The proliferation of data has sparked significant interest in leveraging findings from one study to estimate treatment effects in a different target population without direct outcome observations. However, the transfer learning process is frequently hindered by substantial covariate shift and limited overlap between (i) the source and target populations, as well as (ii) the treatment and control groups within the source. We propose a novel method for overlap-adaptive transfer learning of conditional average treatment effect (CATE) using kernel ridge regression (KRR). Our approach involves partitioning the labeled source data into two subsets. The first one is used to train candidate CATE models based on regression adjustment and pseudo-outcomes. An optimal model is then selected using the second subset and unlabeled target data, employing another pseudo-outcome-based strategy. We provide a theoretical justification for our method through sharp non-asymptotic MSE bounds, highlighting its adaptivity to both weak overlaps and the complexity of CATE function. Extensive numerical studies confirm that our method achieves superior finite-sample efficiency and adaptability. We conclude by demonstrating the effectiveness of our approach using a 401(k) eligibility dataset.
- Abstract(参考訳): データの拡散は、直接的な結果の観察なしに、異なる対象集団における治療効果を推定するために、ある研究から得られた知見を活用することに大きな関心を呼んだ。
しかし、伝達学習過程は、かなりの共変量シフトと限られた重なり合いによってしばしば妨げられる。
一 人口の源泉及び対象
(ii)ソース内の治療及び管理グループ。
カーネルリッジ回帰(KRR)を用いた条件平均処理効果(CATE)の重畳適応変換学習法を提案する。
私たちのアプローチでは、ラベル付きソースデータを2つのサブセットに分割します。
1つ目は、回帰調整と擬似アウトカムに基づいて候補CATEモデルをトレーニングするために使用される。
次に、最適モデルが第2サブセットとラベル付けされていないターゲットデータを使用して選択され、別の擬似アウトカムベースの戦略が使用される。
我々は, 弱い重なり合いとCATE関数の複雑さの両方に対する適応性を強調した, 急激な非漸近的MSE境界による手法の理論的正当性を提供する。
本手法は, 有限サンプル効率と適応性に優れることを確認した。
提案手法の有効性を401(k) の妥当性データセットを用いて実証した。
関連論文リスト
- Estimating Conditional Average Treatment Effects via Sufficient Representation Learning [31.822980052107496]
本稿では,その特徴を十分に表現するためにtextbfCrossNet という新しいニューラルネットワークアプローチを提案し,条件平均処理効果(CATE)を推定する。
数値シミュレーションと実験により,本手法が競合手法より優れていることを示す。
論文 参考訳(メタデータ) (2024-08-30T07:23:59Z) - Improving Bias Correction Standards by Quantifying its Effects on Treatment Outcomes [54.18828236350544]
Propensity score matching (PSM) は、分析のために同等の人口を選択することで選択バイアスに対処する。
異なるマッチング手法は、すべての検証基準を満たす場合でも、同じタスクに対する平均処理効果(ATE)を著しく異なるものにすることができる。
この問題に対処するため,新しい指標A2Aを導入し,有効試合数を削減した。
論文 参考訳(メタデータ) (2024-07-20T12:42:24Z) - TransFusion: Covariate-Shift Robust Transfer Learning for High-Dimensional Regression [11.040033344386366]
対象タスクの学習性能を限定的なサンプルで向上させるため, 新規な融合正規化器を用いた2段階の手法を提案する。
対象モデルの推定誤差に対して、漸近的境界が提供される。
提案手法を分散設定に拡張し,事前学習ファインタニング戦略を実現する。
論文 参考訳(メタデータ) (2024-04-01T14:58:16Z) - Continuous Treatment Effect Estimation Using Gradient Interpolation and
Kernel Smoothing [43.259723628010896]
個人を個別に標本化し,反現実的結果を推測する直接的アプローチを提唱する。
提案手法を5つのベンチマークで評価し,提案手法が6つの最先端手法よりも精度が高いことを示す。
論文 参考訳(メタデータ) (2024-01-27T15:52:58Z) - Minimax Optimal Transfer Learning for Kernel-based Nonparametric
Regression [18.240776405802205]
本稿では,非パラメトリック回帰の文脈における伝達学習問題について考察する。
目的は、実用性と理論的保証の間のギャップを埋めることである。
論文 参考訳(メタデータ) (2023-10-21T10:55:31Z) - B-Learner: Quasi-Oracle Bounds on Heterogeneous Causal Effects Under
Hidden Confounding [51.74479522965712]
本稿では,B-Learnerと呼ばれるメタラーナーを提案する。
我々は、その推定が有効で、鋭く、効率的であることを証明し、既存の方法よりも一般的な条件下で構成推定器に対して準オーラル特性を持つことを示した。
論文 参考訳(メタデータ) (2023-04-20T18:07:19Z) - The Power and Limitation of Pretraining-Finetuning for Linear Regression
under Covariate Shift [127.21287240963859]
本研究では,対象データに基づく事前学習と微調整を併用した伝達学習手法について検討する。
大規模な線形回帰インスタンスの場合、$O(N2)$ソースデータによる転送学習は、$N$ターゲットデータによる教師あり学習と同じくらい効果的である。
論文 参考訳(メタデータ) (2022-08-03T05:59:49Z) - Robust and Agnostic Learning of Conditional Distributional Treatment
Effects [62.44901952244514]
条件平均治療効果(CATE)は、個々の因果効果の最適点予測である。
集約分析では、通常は分布処理効果(DTE)の測定によって対処される。
我々は,多種多様な問題に対して条件付きDTE(CDTE)を学習するための,新しい堅牢でモデルに依存しない手法を提供する。
論文 参考訳(メタデータ) (2022-05-23T17:40:31Z) - Invariance Learning in Deep Neural Networks with Differentiable Laplace
Approximations [76.82124752950148]
我々はデータ拡張を選択するための便利な勾配法を開発した。
我々はKronecker-factored Laplace近似を我々の目的とする限界確率に近似する。
論文 参考訳(メタデータ) (2022-02-22T02:51:11Z) - Scalable Personalised Item Ranking through Parametric Density Estimation [53.44830012414444]
暗黙のフィードバックから学ぶことは、一流問題の難しい性質のために困難です。
ほとんどの従来の方法は、一級問題に対処するためにペアワイズランキングアプローチとネガティブサンプラーを使用します。
本論文では,ポイントワイズと同等の収束速度を実現する学習対ランクアプローチを提案する。
論文 参考訳(メタデータ) (2021-05-11T03:38:16Z) - Rank-Based Multi-task Learning for Fair Regression [9.95899391250129]
バイアス付きデータセットに基づくマルチタスク回帰モデルのための新しい学習手法を開発した。
一般的な非パラメトリックオラクルベースの非ワールド乗算器データセットを使用します。
論文 参考訳(メタデータ) (2020-09-23T22:32:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。