論文の概要: Exploring Persona Sentiment Sensitivity in Personalized Dialogue Generation
- arxiv url: http://arxiv.org/abs/2502.11423v1
- Date: Mon, 17 Feb 2025 04:36:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-18 14:12:37.715239
- Title: Exploring Persona Sentiment Sensitivity in Personalized Dialogue Generation
- Title(参考訳): パーソナライズされた対話生成におけるペルソナ感度の探索
- Authors: YongHyun Jun, Hwanhee Lee,
- Abstract要約: 偏極化ユーザプロファイルを用いてダイアログを大規模に解析する。
否定的な偏極性を持つユーザを含む対話はペルソナ属性を過度に強調する傾向にあり,それによってエンエンテイメントや矛盾する事例が増加することが判明した。
本稿では,旋回型生成戦略とプロファイル順序付け機構を組み合わせた対話生成手法を提案する。
- 参考スコア(独自算出の注目度): 4.438698005789677
- License:
- Abstract: Personalized dialogue systems have advanced considerably with the integration of user-specific personas into large language models (LLMs). However, while LLMs can effectively generate personalized responses, the influence of persona sentiment on dialogue quality remains underexplored. In this work, we conduct a large-scale analysis of dialogues generated using a range of polarized user profiles. Our experiments reveal that dialogues involving negatively polarized users tend to overemphasize persona attributes, leading to increased entailment and contradiction instances and lower overall coherence. In contrast, positively polarized profiles yield dialogues that selectively incorporate persona information, resulting in smoother and more coherent interactions. Furthermore, we find that personas with weak or neutral sentiment generally produce lower-quality dialogues. Motivated by these findings, we propose a dialogue generation approach that explicitly accounts for persona polarity by combining a turn-based generation strategy with a profile ordering mechanism. Our study provides new insights into the sensitivity of LLMs to persona sentiment and offers guidance for developing more robust and nuanced personalized dialogue systems.
- Abstract(参考訳): パーソナライズされた対話システムは,ユーザ固有のペルソナを大規模言語モデル (LLM) に統合することによって大きく進歩している。
しかし、LLMはパーソナライズされた応答を効果的に生成できる一方で、対話の質に対するペルソナ感情の影響は未解明のままである。
本研究では,様々なユーザプロファイルを用いた対話を大規模に分析する。
実験の結果, ネガティブな偏極性を持つユーザ同士の対話はペルソナ属性を過度に強調し, 係り合いや矛盾点の増加, 全体的なコヒーレンス低下につながることが明らかとなった。
対照的に、正に偏極されたプロファイルは、ペルソナ情報を選択的に組み込んだ対話をもたらし、よりスムーズでより一貫性のある相互作用をもたらす。
さらに、弱感や中立感のペルソナは、一般的に低品質な対話を生み出す。
これらの知見に触発されて、ターンベースの生成戦略とプロファイル順序付け機構を組み合わせることで、人格極性を明確に説明できる対話生成手法を提案する。
本研究は,LLMのペルソナ感情に対する感受性に関する新たな知見を提供し,より堅牢でニュアンスの高い対話システムを開発するためのガイダンスを提供する。
関連論文リスト
- Dialogue Language Model with Large-Scale Persona Data Engineering [10.160626284195434]
PPDSはオープンドメインのペルソナ対話システムであり、ペルソナの一貫性を高めるためにペルソナ対話データセットに広範囲な生成前トレーニングを利用する。
本研究では,自律的かつ高精度な対話データセット生成を目的としたペルソナ抽出モデルを提案する。
また、構築されたデータセットに固有の無効なペルソナバイアスに対処するために、先駆的なペルソナ拡張手法を公表した。
論文 参考訳(メタデータ) (2024-12-12T07:49:06Z) - WHAT, WHEN, and HOW to Ground: Designing User Persona-Aware
Conversational Agents for Engaging Dialogue [4.328280329592151]
本稿では,WWH問題に対処するオープンドメイン対話システムを構築する方法を提案する。
提案手法は、重み付けされたデータセットブレンディング、ネガティブなペルソナ情報拡張方法、パーソナライズされた会話データセットの設計を含む。
本研究は,対話の流速と接地傾向のバランスを効果的に保ちつつ,接地応答の制御性と説明性を向上させるための応答型ラベルを導入する。
論文 参考訳(メタデータ) (2023-06-06T02:28:38Z) - Less is More: Learning to Refine Dialogue History for Personalized
Dialogue Generation [57.73547958927826]
我々は,対話履歴をより多く処理し,より正確なペルソナ情報を得ることのできる,ユーザ対話履歴を大規模に洗練することを提案する。
具体的には、3つの個人情報精算器とパーソナライズされた応答生成器で構成されるMSPモデルを設計する。
論文 参考訳(メタデータ) (2022-04-18T02:02:56Z) - Learning to Predict Persona Information forDialogue Personalization
without Explicit Persona Description [10.17868476063421]
対話エージェントをパーソナライズするために,対話履歴に基づいてペルソナ情報を予測する方法を提案する。
PersonaChatデータセットの実験結果から,提案手法は生成した応答の一貫性を向上させることができることがわかった。
トレーニングされたペルソナ予測モデルは、他のデータセットにうまく転送することができ、より関連するレスポンスを生成するのに役立つ。
論文 参考訳(メタデータ) (2021-11-30T03:19:24Z) - DynaEval: Unifying Turn and Dialogue Level Evaluation [60.66883575106898]
統合された自動評価フレームワークDynaEvalを提案する。
ターンレベルの評価を行うことができるが、対話全体の品質を公平に考慮することもできる。
実験の結果,DynaEvalは最先端の対話コヒーレンスモデルよりも優れていた。
論文 参考訳(メタデータ) (2021-06-02T12:23:18Z) - Revealing Persona Biases in Dialogue Systems [64.96908171646808]
対話システムにおけるペルソナバイアスに関する最初の大規模研究について述べる。
我々は、異なる社会階級、性的指向、人種、性別のペルソナの分析を行う。
BlenderおよびDialoGPT対話システムの研究では、ペルソナの選択が生成された応答の害の程度に影響を与える可能性があることを示しています。
論文 参考訳(メタデータ) (2021-04-18T05:44:41Z) - Is this Dialogue Coherent? Learning from Dialogue Acts and Entities [82.44143808977209]
スイッチボード・コヒーレンス・コーパス(SWBD-Coh)コーパス(Switchboard Coherence corpus,SWBD-Coh)を作成する。
コーパスの統計的分析は、ターンコヒーレンス知覚がエンティティの分布パターンによってどのように影響を受けるかを示している。
DA情報とエンティティ情報を組み合わせたモデルでは,応答選択とターンコヒーレンス評価の両面で最高の性能が得られることがわかった。
論文 参考訳(メタデータ) (2020-06-17T21:02:40Z) - Will I Sound Like Me? Improving Persona Consistency in Dialogues through
Pragmatic Self-Consciousness [62.55060760615656]
一貫性に対処する最近のモデルは、しばしば追加の自然言語推論(NLI)ラベルでトレーニングするか、あるいは一貫性を維持するためにトレーニングされた追加モジュールを生成エージェントにアタッチする。
社会的認知と実用性に触発されて、私たちは既存の対話エージェントに、想像上のリスナーを通して、公的な自己意識を持たせました。
我々のアプローチは、Rational Speech Actsフレームワークに基づいて、会話エージェントに矛盾の発声を控えるように強制することができる。
論文 参考訳(メタデータ) (2020-04-13T08:16:16Z) - You Impress Me: Dialogue Generation via Mutual Persona Perception [62.89449096369027]
認知科学の研究は、理解が高品質なチャット会話に不可欠なシグナルであることを示唆している。
そこで我々は,P2 Botを提案する。このP2 Botは,理解を明示的にモデル化することを目的とした送信機受信者ベースのフレームワークである。
論文 参考訳(メタデータ) (2020-04-11T12:51:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。