Exploring Persona Sentiment Sensitivity in Personalized Dialogue Generation
- URL: http://arxiv.org/abs/2502.11423v2
- Date: Sun, 01 Jun 2025 05:29:30 GMT
- Title: Exploring Persona Sentiment Sensitivity in Personalized Dialogue Generation
- Authors: Yonghyun Jun, Hwanhee Lee,
- Abstract summary: We conduct a large-scale analysis of dialogues generated using a range of polarized user profiles.<n>Our experiments reveal that dialogues involving negatively polarized users tend to overemphasize persona attributes.<n>We propose a dialogue generation approach that explicitly accounts for persona polarity by combining a turn-based generation strategy with a profile ordering mechanism and sentiment-aware prompting.
- Score: 4.438698005789677
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Personalized dialogue systems have advanced considerably with the integration of user-specific personas into large language models (LLMs). However, while LLMs can effectively generate personalized responses, the influence of persona sentiment on dialogue quality remains underexplored. In this work, we conduct a large-scale analysis of dialogues generated using a range of polarized user profiles. Our experiments reveal that dialogues involving negatively polarized users tend to overemphasize persona attributes. In contrast, positively polarized profiles yield dialogues that selectively incorporate persona information, resulting in smoother interactions. Furthermore, we find that personas with weak or neutral sentiment generally produce lower-quality dialogues. Motivated by these findings, we propose a dialogue generation approach that explicitly accounts for persona polarity by combining a turn-based generation strategy with a profile ordering mechanism and sentiment-aware prompting. Our study provides new insights into the sensitivity of LLMs to persona sentiment and offers guidance for developing more robust and nuanced personalized dialogue systems.
Related papers
- Aligning Spoken Dialogue Models from User Interactions [55.192134724622235]
We propose a novel preference alignment framework to improve spoken dialogue models on realtime conversations from user interactions.<n>We create a dataset of more than 150,000 preference pairs from raw multi-turn speech conversations annotated with AI feedback.<n>Our findings shed light on the importance of a well-calibrated balance among various dynamics, crucial for natural real-time speech dialogue systems.
arXiv Detail & Related papers (2025-06-26T16:45:20Z) - From Persona to Person: Enhancing the Naturalness with Multiple Discourse Relations Graph Learning in Personalized Dialogue Generation [11.442761234901289]
We propose MUDI ($textbfMu$ltiple $textbfDi$scourse Relations Graph Learning) for personalized dialogue generation.<n>We utilize a Large Language Model to assist in annotating discourse relations and to transform dialogue data into structured dialogue graphs.<n>Our experiments demonstrate significant improvements in the quality of personalized responses, thus resembling human-like dialogue exchanges.
arXiv Detail & Related papers (2025-06-13T08:12:52Z) - When Harry Meets Superman: The Role of The Interlocutor in Persona-Based Dialogue Generation [18.650805984660707]
Endowing dialogue agents with persona information has proven to significantly improve the consistency and diversity of their generations.<n>While much focus has been placed on aligning dialogues with provided personas, the adaptation to the interlocutor's profile remains largely underexplored.<n>We investigate three key aspects: (1) a model's ability to align responses with both the provided persona and the interlocutor's; (2) its robustness when dealing with familiar versus unfamiliar interlocutors and topics, and (3) the impact of additional fine-tuning on specific persona-based dialogues.
arXiv Detail & Related papers (2025-05-30T14:04:30Z) - Dialogue Language Model with Large-Scale Persona Data Engineering [13.905282984245101]
PPDS is an open-domain persona dialogue system that employs extensive generative pre-training on a persona dialogue dataset to enhance persona consistency.<n>We present a persona extraction model designed to autonomously and precisely generate vast persona dialogue datasets.<n>We also unveil a pioneering persona augmentation technique to address the invalid persona bias inherent in the constructed dataset.
arXiv Detail & Related papers (2024-12-12T07:49:06Z) - BotChat: Evaluating LLMs' Capabilities of Having Multi-Turn Dialogues [72.65163468440434]
This report provides a preliminary evaluation of existing large language models for human-style multi-turn chatting.
We prompt large language models (LLMs) to generate a full multi-turn dialogue based on the ChatSEED, utterance by utterance.
We find GPT-4 can generate human-style multi-turn dialogues with impressive quality, significantly outperforms its counterparts.
arXiv Detail & Related papers (2023-10-20T16:53:51Z) - WHAT, WHEN, and HOW to Ground: Designing User Persona-Aware
Conversational Agents for Engaging Dialogue [4.328280329592151]
We present a method for building a personalized open-domain dialogue system to address the WWH problem for natural response generation in a commercial setting.
The proposed approach involves weighted dataset blending, negative persona information augmentation methods, and the design of personalized conversation datasets.
Our work effectively balances dialogue fluency and tendency to ground, while also introducing a response-type label to improve the controllability and explainability of the grounded responses.
arXiv Detail & Related papers (2023-06-06T02:28:38Z) - Less is More: Learning to Refine Dialogue History for Personalized
Dialogue Generation [57.73547958927826]
We propose to refine the user dialogue history on a large scale, based on which we can handle more dialogue history and obtain more accurate persona information.
Specifically, we design an MSP model which consists of three personal information refiners and a personalized response generator.
arXiv Detail & Related papers (2022-04-18T02:02:56Z) - Learning to Predict Persona Information forDialogue Personalization
without Explicit Persona Description [10.17868476063421]
We propose a novel approach that learns to predict persona information based on the dialogue history to personalize the dialogue agent.
Experimental results on the PersonaChat dataset show that the proposed method can improve the consistency of generated responses.
A trained persona prediction model can be successfully transferred to other datasets and help generate more relevant responses.
arXiv Detail & Related papers (2021-11-30T03:19:24Z) - DynaEval: Unifying Turn and Dialogue Level Evaluation [60.66883575106898]
We propose DynaEval, a unified automatic evaluation framework.
It is capable of performing turn-level evaluation, but also holistically considers the quality of the entire dialogue.
Experiments show that DynaEval significantly outperforms the state-of-the-art dialogue coherence model.
arXiv Detail & Related papers (2021-06-02T12:23:18Z) - Revealing Persona Biases in Dialogue Systems [64.96908171646808]
We present the first large-scale study on persona biases in dialogue systems.
We conduct analyses on personas of different social classes, sexual orientations, races, and genders.
In our studies of the Blender and DialoGPT dialogue systems, we show that the choice of personas can affect the degree of harms in generated responses.
arXiv Detail & Related papers (2021-04-18T05:44:41Z) - Is this Dialogue Coherent? Learning from Dialogue Acts and Entities [82.44143808977209]
We create the Switchboard Coherence (SWBD-Coh) corpus, a dataset of human-human spoken dialogues annotated with turn coherence ratings.
Our statistical analysis of the corpus indicates how turn coherence perception is affected by patterns of distribution of entities.
We find that models combining both DA and entity information yield the best performances both for response selection and turn coherence rating.
arXiv Detail & Related papers (2020-06-17T21:02:40Z) - Will I Sound Like Me? Improving Persona Consistency in Dialogues through
Pragmatic Self-Consciousness [62.55060760615656]
Recent models tackling consistency often train with additional Natural Language Inference (NLI) labels or attach trained extra modules to the generative agent for maintaining consistency.
Inspired by social cognition and pragmatics, we endow existing dialogue agents with public self-consciousness on the fly through an imaginary listener.
Our approach, based on the Rational Speech Acts framework, can enforce dialogue agents to refrain from uttering contradiction.
arXiv Detail & Related papers (2020-04-13T08:16:16Z) - You Impress Me: Dialogue Generation via Mutual Persona Perception [62.89449096369027]
The research in cognitive science suggests that understanding is an essential signal for a high-quality chit-chat conversation.
Motivated by this, we propose P2 Bot, a transmitter-receiver based framework with the aim of explicitly modeling understanding.
arXiv Detail & Related papers (2020-04-11T12:51:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.