論文の概要: Do we Really Need Visual Instructions? Towards Visual Instruction-Free Fine-tuning for Large Vision-Language Models
- arxiv url: http://arxiv.org/abs/2502.11427v1
- Date: Mon, 17 Feb 2025 04:38:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-18 14:15:45.783201
- Title: Do we Really Need Visual Instructions? Towards Visual Instruction-Free Fine-tuning for Large Vision-Language Models
- Title(参考訳): 視覚インストラクションは本当に必要か? : 大規模視覚言語モデルのための視覚インストラクションフリーファインタニングに向けて
- Authors: Zikang Liu, Kun Zhou, Wayne Xin Zhao, Dawei Gao, Yaliang Li, Ji-Rong Wen,
- Abstract要約: LVLMのための視覚的命令なし微調整フレームワークであるViFTを提案する。
我々は、タスク解決能力と視覚知覚能力を個別に学習するために、トレーニング中にテキストのみの指示と画像キャプションデータのみを必要とする。
実験結果から,VFTはいくつかの視覚的推論と,それに続く視覚的指示に対して,最先端の性能を達成できることが示された。
- 参考スコア(独自算出の注目度): 127.38740043393527
- License:
- Abstract: Visual instruction tuning has become the predominant technology in eliciting the multimodal task-solving capabilities of large vision-language models (LVLMs). Despite the success, as visual instructions require images as the input, it would leave the gap in inheriting the task-solving capabilities from the backbone LLMs, and make it costly to collect a large-scale dataset. To address it, we propose ViFT, a visual instruction-free fine-tuning framework for LVLMs. In ViFT, we only require the text-only instructions and image caption data during training, to separately learn the task-solving and visual perception abilities. During inference, we extract and combine the representations of the text and image inputs, for fusing the two abilities to fulfill multimodal tasks. Experimental results demonstrate that ViFT can achieve state-of-the-art performance on several visual reasoning and visual instruction following benchmarks, with rather less training data. Our code and data will be publicly released.
- Abstract(参考訳): 視覚インストラクションチューニングは、大規模視覚言語モデル(LVLM)のマルチモーダルタスク解決能力を引き出す上で、主要な技術となっている。
この成功にもかかわらず、視覚的な指示は入力としてイメージを必要とするため、バックボーンのLSMからタスク解決能力を継承するギャップを埋め、大規模なデータセットを収集するのにコストがかかる。
そこで我々は,LVLMのための視覚的命令なし微調整フレームワークであるViFTを提案する。
ViFTでは、タスク解決能力と視覚知覚能力を個別に学習するために、トレーニング中にテキストのみの指示と画像キャプションデータしか必要としない。
推論の際には,テキストと画像の入力の表現を抽出・結合し,2つの機能を融合させてマルチモーダルなタスクを遂行する。
実験結果から、ViFTは、より少ないトレーニングデータで、いくつかの視覚的推論と、それに続く視覚的指示に対して、最先端のパフォーマンスを達成できることが示されている。
コードとデータは公開されます。
関連論文リスト
- Symmetrical Visual Contrastive Optimization: Aligning Vision-Language Models with Minimal Contrastive Images [7.823336661261962]
VLM(Large Vision-Language Models)は、画像の内容を無視し、言語モデルに過剰に依存する傾向にある。
本稿では,S-VCO(Symmetrical Visual Contrastive Optimization)を提案する。
論文 参考訳(メタデータ) (2025-02-19T18:05:42Z) - FiVL: A Framework for Improved Vision-Language Alignment [10.184567639685321]
本稿では,LVLMを学習するための新しいデータセット構築手法であるFiVLを紹介する。
これらのデータセットは、LVLMのイメージコンテンツを実体的証拠として使用する能力のトレーニングと評価の両方に使用することができる。
提案するデータセットの有用性を実証するために,検証手法と説明可能性の応用とともに,ベースラインを向上する革新的なトレーニングタスクを導入する。
論文 参考訳(メタデータ) (2024-12-19T09:24:10Z) - Instruction Tuning-free Visual Token Complement for Multimodal LLMs [51.138806401996696]
マルチモーダルな大言語モデル(MLLM)は、視覚と言語の間のエレガントな橋渡しを約束している。
本稿では,MLLM が欠落した視覚機能を取り戻すのに役立つ Visual Token Complement フレームワーク (VTC) を提案する。
我々のVTCは、テキスト不関連特徴を特定するためのガイドとしてテキスト・ツー・イメージ生成を統合し、視覚的セレクタを開発し、補完的な視覚的トークンを生成する。
論文 参考訳(メタデータ) (2024-08-09T12:13:01Z) - Draw-and-Understand: Leveraging Visual Prompts to Enable MLLMs to Comprehend What You Want [58.091825321168514]
我々は、Draw-and-Understandプロジェクト、新しいモデル、マルチドメインデータセット、ビジュアルプロンプトのための挑戦的なベンチマークを紹介する。
具体的には、視覚エンコーダ、視覚プロンプトエンコーダ、LLMを接続する、エンド・ツー・エンドのマルチモーダル大規模言語モデル(MLLM)を提案する。
MLLMの視覚的プロンプト研究を進めるために,MDVP-DataとMDVP-Benchを紹介する。
論文 参考訳(メタデータ) (2024-03-29T16:26:20Z) - Enhancing Visual Document Understanding with Contrastive Learning in
Large Visual-Language Models [56.76307866160105]
文書オブジェクト協調学習(Document Object Contrastive Learning, DoCo)と呼ばれる対照的な学習フレームワークを提案する。
DoCoは補助的なマルチモーダルエンコーダを利用して文書オブジェクトの特徴を取得し、それをLVLM(Large Visual-Language Models)の視覚エンコーダによって生成された視覚的特徴に合わせる。
提案するDoCoは,様々なLVLMの事前学習において,推論過程における計算複雑性の増大を招くことなく,プラグイン・アンド・プレイの事前学習手法として機能することが実証された。
論文 参考訳(メタデータ) (2024-02-29T10:17:27Z) - VILA: On Pre-training for Visual Language Models [74.08039416548209]
ステップ・バイ・ステップ制御可能な比較によるVLM事前学習の設計オプションについて検討した。
私たちは、最先端のモデルよりも一貫して優れたVisual LanguageモデルファミリであるVILAを構築します。
論文 参考訳(メタデータ) (2023-12-12T18:58:18Z) - Scaling Up Visual and Vision-Language Representation Learning With Noisy
Text Supervision [57.031588264841]
高価なフィルタリングや後処理のステップを使わずに得られる10億以上の画像アルトテキストペアのノイズの多いデータセットを活用します。
単純なデュアルエンコーダアーキテクチャは、画像とテキストペアの視覚的および言語的表現を、対照的な損失を使って整列させることを学ぶ。
コーパスのスケールはノイズを補うことができ、そのような単純な学習方式であっても最先端の表現に繋がることを示す。
論文 参考訳(メタデータ) (2021-02-11T10:08:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。