論文の概要: Fishing For Cheap And Efficient Pruners At Initialization
- arxiv url: http://arxiv.org/abs/2502.11450v1
- Date: Mon, 17 Feb 2025 05:22:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-18 14:14:38.820384
- Title: Fishing For Cheap And Efficient Pruners At Initialization
- Title(参考訳): 初期化時の漁獲量と効率の良い漁船の漁獲量
- Authors: Ivo Gollini Navarrete, Nicolas Mauricio Cuadrado, Jose Renato Restom, Martin Takáč, Samuel Horváth,
- Abstract要約: Pruningは、大規模ディープニューラルネットワーク(DNN)のデプロイに伴うコストと環境への影響を軽減する、有望なソリューションを提供する。
本稿では,Fisher-Taylor Sensitivity (FTS)について紹介する。これは,経験的Fisher Information Matrix (FIM) 対角線に基づく,安価で効率的なプルーニング基準である。
提案手法は, 極端間隔条件下であっても, ワンショットPSTの最先端技術に対する競合性能を実現する。
- 参考スコア(独自算出の注目度): 4.433137726540548
- License:
- Abstract: Pruning offers a promising solution to mitigate the associated costs and environmental impact of deploying large deep neural networks (DNNs). Traditional approaches rely on computationally expensive trained models or time-consuming iterative prune-retrain cycles, undermining their utility in resource-constrained settings. To address this issue, we build upon the established principles of saliency (LeCun et al., 1989) and connection sensitivity (Lee et al., 2018) to tackle the challenging problem of one-shot pruning neural networks (NNs) before training (PBT) at initialization. We introduce Fisher-Taylor Sensitivity (FTS), a computationally cheap and efficient pruning criterion based on the empirical Fisher Information Matrix (FIM) diagonal, offering a viable alternative for integrating first- and second-order information to identify a model's structurally important parameters. Although the FIM-Hessian equivalency only holds for convergent models that maximize the likelihood, recent studies (Karakida et al., 2019) suggest that, even at initialization, the FIM captures essential geometric information of parameters in overparameterized NNs, providing the basis for our method. Finally, we demonstrate empirically that layer collapse, a critical limitation of data-dependent pruning methodologies, is easily overcome by pruning within a single training epoch after initialization. We perform experiments on ResNet18 and VGG19 with CIFAR-10 and CIFAR-100, widely used benchmarks in pruning research. Our method achieves competitive performance against state-of-the-art techniques for one-shot PBT, even under extreme sparsity conditions. Our code is made available to the public.
- Abstract(参考訳): Pruningは、大規模ディープニューラルネットワーク(DNN)のデプロイに伴うコストと環境への影響を軽減する、有望なソリューションを提供する。
従来のアプローチは、計算コストのかかる訓練モデルや時間を要する反復的なプルー・リトラクションサイクルに依存しており、リソース制約のある環境での実用性を損なう。
この問題に対処するために、初期化前のワンショットプルーニングニューラルネットワーク(NN)の課題に対処するために、確立されたサリエンシの原則(LeCun et al , 1989)と接続感度(Lee et al , 2018)を構築した。
本稿では,Fisher-Taylor Sensitivity (FTS) について述べる。Fisher-Taylor Sensitivity (FTS) は,経験的Fisher Information Matrix (FIM) 対角線に基づく,計算的に安価で効率的なプルーニング基準である。
FIM-ヘッセン同値性は、この可能性を最大化する収束モデルのみに留まるが、最近の研究(Karakida et al , 2019)では、初期化においても、FIMは過パラメータ化NNにおけるパラメータの基本的な幾何学的情報をキャプチャし、本手法の基盤となることを示唆している。
最後に,データ依存型プルーニング手法の限界である層崩壊が,初期化後の1つのトレーニングエポック内でのプルーニングによって容易に克服できることを実証的に示す。
我々はCIFAR-10とCIFAR-100を用いてResNet18とVGG19の実験を行った。
提案手法は, 極端間隔条件下であっても, ワンショットPSTの最先端技術に対する競合性能を実現する。
私たちのコードは一般に公開されています。
関連論文リスト
- Concurrent Training and Layer Pruning of Deep Neural Networks [0.0]
トレーニングの初期段階において、ニューラルネットワークの無関係な層を特定し、排除できるアルゴリズムを提案する。
本研究では,非線形区間を切断した後にネットワークを流れる情報の流れを,非線形ネットワーク区間の周囲の残差接続を用いた構造を用いる。
論文 参考訳(メタデータ) (2024-06-06T23:19:57Z) - Towards Continual Learning Desiderata via HSIC-Bottleneck
Orthogonalization and Equiangular Embedding [55.107555305760954]
本稿では,レイヤワイドパラメータのオーバーライトや決定境界の歪みに起因する,概念的にシンプルで効果的な手法を提案する。
提案手法は,ゼロの指数バッファと1.02倍の差が絶対的に優れていても,競争精度が向上する。
論文 参考訳(メタデータ) (2024-01-17T09:01:29Z) - Fast-NTK: Parameter-Efficient Unlearning for Large-Scale Models [17.34908967455907]
マシン・アンラーニング'は、スクラッチから再トレーニングすることなく、不要なデータの選択的削除を提案する。
Fast-NTKはNTKベースの新しいアンラーニングアルゴリズムであり、計算複雑性を大幅に削減する。
論文 参考訳(メタデータ) (2023-12-22T18:55:45Z) - Adversarial Collaborative Filtering for Free [27.949683060138064]
CF(Collaborative Filtering)は、ユーザが関心のある項目を見つけるのに役立つ。
既存の方法はノイズの多いデータ問題に悩まされ、推奨の質に悪影響を及ぼす。
本稿では, 計算コストを犠牲にすることなく, 対向学習を行う簡易かつ効果的な手法として, シャープネス対応協調フィルタリング(CF)を提案する。
論文 参考訳(メタデータ) (2023-08-20T19:25:38Z) - Can we achieve robustness from data alone? [0.7366405857677227]
敵の訓練とその変種は、ニューラルネットワークを用いた敵の堅牢な分類を実現するための一般的な方法となっている。
そこで我々は,ロバストな分類のためのメタラーニング手法を考案し,その展開前のデータセットを原則的に最適化する。
MNIST と CIFAR-10 の実験により、我々が生成するデータセットはPGD 攻撃に対して非常に高い堅牢性を持つことが示された。
論文 参考訳(メタデータ) (2022-07-24T12:14:48Z) - A Simple Fine-tuning Is All You Need: Towards Robust Deep Learning Via
Adversarial Fine-tuning [90.44219200633286]
我々は,$textitslow start, fast decay$ learning rate schedulingストラテジーに基づく,単純かつ非常に効果的な敵の微調整手法を提案する。
実験の結果,提案手法はCIFAR-10, CIFAR-100, ImageNetデータセットの最先端手法よりも優れていた。
論文 参考訳(メタデータ) (2020-12-25T20:50:15Z) - Continual Learning in Recurrent Neural Networks [67.05499844830231]
リカレントニューラルネットワーク(RNN)を用いた逐次データ処理における連続学習手法の有効性を評価する。
RNNに弾性重み強化などの重み-重み-重み-重み-重み-重み-重み-重み-重み-重み-重み-重み-重み-重み-重み-重み-重み-重み-重み-重み-重み-重み-重み-重み-重み-重み-重み-重み-重み-重み-重み-重
そこで本研究では,重み付け手法の性能が処理シーケンスの長さに直接的な影響を受けず,むしろ高動作メモリ要求の影響を受けていることを示す。
論文 参考訳(メタデータ) (2020-06-22T10:05:12Z) - Revisiting Initialization of Neural Networks [72.24615341588846]
ヘッセン行列のノルムを近似し, 制御することにより, 層間における重みのグローバルな曲率を厳密に推定する。
Word2Vec と MNIST/CIFAR 画像分類タスクの実験により,Hessian ノルムの追跡が診断ツールとして有用であることが確認された。
論文 参考訳(メタデータ) (2020-04-20T18:12:56Z) - Robust Pruning at Initialization [61.30574156442608]
計算リソースが限られているデバイス上で、機械学習アプリケーションを使用するための、より小さく、エネルギー効率のよいニューラルネットワークの必要性が高まっている。
ディープNNにとって、このような手順はトレーニングが困難であり、例えば、ひとつの層が完全に切断されるのを防ぐことができないため、満足できないままである。
論文 参考訳(メタデータ) (2020-02-19T17:09:50Z) - MSE-Optimal Neural Network Initialization via Layer Fusion [68.72356718879428]
ディープニューラルネットワークは、さまざまな分類と推論タスクに対して最先端のパフォーマンスを達成する。
グラデーションと非進化性の組み合わせは、学習を新しい問題の影響を受けやすいものにする。
確率変数を用いて学習した深層ネットワークの近傍層を融合する手法を提案する。
論文 参考訳(メタデータ) (2020-01-28T18:25:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。