UniCBE: An Uniformity-driven Comparing Based Evaluation Framework with Unified Multi-Objective Optimization
- URL: http://arxiv.org/abs/2502.11454v1
- Date: Mon, 17 Feb 2025 05:28:12 GMT
- Title: UniCBE: An Uniformity-driven Comparing Based Evaluation Framework with Unified Multi-Objective Optimization
- Authors: Peiwen Yuan, Shaoxiong Feng, Yiwei Li, Xinglin Wang, Yueqi Zhang, Jiayi Shi, Chuyi Tan, Boyuan Pan, Yao Hu, Kan Li,
- Abstract summary: We propose UniCBE, a unified uniformity-driven CBE framework.
On the AlpacaEval benchmark, UniCBE saves over 17% of evaluation budgets while achieving a Pearson correlation with ground truth exceeding 0.995.
In scenarios where new models are continuously introduced, UniCBE can even save over 50% of evaluation costs.
- Score: 19.673388630963807
- License:
- Abstract: Human preference plays a significant role in measuring large language models and guiding them to align with human values. Unfortunately, current comparing-based evaluation (CBE) methods typically focus on a single optimization objective, failing to effectively utilize scarce yet valuable preference signals. To address this, we delve into key factors that can enhance the accuracy, convergence, and scalability of CBE: suppressing sampling bias, balancing descending process of uncertainty, and mitigating updating uncertainty. Following the derived guidelines, we propose UniCBE, a unified uniformity-driven CBE framework which simultaneously optimize these core objectives by constructing and integrating three decoupled sampling probability matrices, each designed to ensure uniformity in specific aspects. We further ablate the optimal tuple sampling and preference aggregation strategies to achieve efficient CBE. On the AlpacaEval benchmark, UniCBE saves over 17% of evaluation budgets while achieving a Pearson correlation with ground truth exceeding 0.995, demonstrating excellent accuracy and convergence. In scenarios where new models are continuously introduced, UniCBE can even save over 50% of evaluation costs, highlighting its improved scalability.
Related papers
- Understanding Likelihood Over-optimisation in Direct Alignment Algorithms [20.043560907227018]
Direct Alignment Algorithms (DAAs) have emerged as alternatives to online Reinforcement Learning from Human Feedback.
These algorithms aim to increase the likelihood of generating better (preferred) completions while discouraging worse (non-preferred) ones.
This work explores the relationship between completion likelihood and model performance in state-of-the-art DAAs.
arXiv Detail & Related papers (2024-10-15T15:14:22Z) - Self-Evolutionary Large Language Models through Uncertainty-Enhanced Preference Optimization [9.618391485742968]
Iterative preference optimization has recently become one of the de-facto training paradigms for large language models (LLMs)
We present an uncertainty-enhanced textbfPreference textbfOptimization framework to make the LLM self-evolve with reliable feedback.
Our framework substantially alleviates the noisy problem and improves the performance of iterative preference optimization.
arXiv Detail & Related papers (2024-09-17T14:05:58Z) - Bridging and Modeling Correlations in Pairwise Data for Direct Preference Optimization [75.1240295759264]
We propose an effective framework for Bridging and Modeling Correlations in pairwise data, named BMC.
We increase the consistency and informativeness of the pairwise preference signals through targeted modifications.
We identify that DPO alone is insufficient to model these correlations and capture nuanced variations.
arXiv Detail & Related papers (2024-08-14T11:29:47Z) - Towards Stable Machine Learning Model Retraining via Slowly Varying Sequences [6.067007470552307]
We propose a model-agnostic framework for finding sequences of models that are stable across retraining iterations.
We develop a mixed-integer optimization formulation that is guaranteed to recover optimal models.
We find that, on average, a 2% reduction in predictive power leads to a 30% improvement in stability.
arXiv Detail & Related papers (2024-03-28T22:45:38Z) - MixedNUTS: Training-Free Accuracy-Robustness Balance via Nonlinearly Mixed Classifiers [41.56951365163419]
"MixedNUTS" is a training-free method where the output logits of a robust classifier are processed by nonlinear transformations with only three parameters.
MixedNUTS then converts the transformed logits into probabilities and mixes them as the overall output.
On CIFAR-10, CIFAR-100, and ImageNet datasets, experimental results with custom strong adaptive attacks demonstrate MixedNUTS's vastly improved accuracy and near-SOTA robustness.
arXiv Detail & Related papers (2024-02-03T21:12:36Z) - Density Ratio Estimation-based Bayesian Optimization with Semi-Supervised Learning [5.346298077607419]
We propose density ratio estimation-based Bayesian optimization with semi-supervised learning to solve this challenge.
We show the empirical results of our methods and several baseline methods in two distinct scenarios with unlabeled point sampling and a fixed-size pool.
arXiv Detail & Related papers (2023-05-24T23:01:56Z) - GREAT Score: Global Robustness Evaluation of Adversarial Perturbation using Generative Models [60.48306899271866]
We present a new framework, called GREAT Score, for global robustness evaluation of adversarial perturbation using generative models.
We show high correlation and significantly reduced cost of GREAT Score when compared to the attack-based model ranking on RobustBench.
GREAT Score can be used for remote auditing of privacy-sensitive black-box models.
arXiv Detail & Related papers (2023-04-19T14:58:27Z) - Fed-CBS: A Heterogeneity-Aware Client Sampling Mechanism for Federated
Learning via Class-Imbalance Reduction [76.26710990597498]
We show that the class-imbalance of the grouped data from randomly selected clients can lead to significant performance degradation.
Based on our key observation, we design an efficient client sampling mechanism, i.e., Federated Class-balanced Sampling (Fed-CBS)
In particular, we propose a measure of class-imbalance and then employ homomorphic encryption to derive this measure in a privacy-preserving way.
arXiv Detail & Related papers (2022-09-30T05:42:56Z) - Evolving Pareto-Optimal Actor-Critic Algorithms for Generalizability and
Stability [67.8426046908398]
Generalizability and stability are two key objectives for operating reinforcement learning (RL) agents in the real world.
This paper presents MetaPG, an evolutionary method for automated design of actor-critic loss functions.
arXiv Detail & Related papers (2022-04-08T20:46:16Z) - Stochastic Optimization of Areas Under Precision-Recall Curves with
Provable Convergence [66.83161885378192]
Area under ROC (AUROC) and precision-recall curves (AUPRC) are common metrics for evaluating classification performance for imbalanced problems.
We propose a technical method to optimize AUPRC for deep learning.
arXiv Detail & Related papers (2021-04-18T06:22:21Z) - Autoregressive Score Matching [113.4502004812927]
We propose autoregressive conditional score models (AR-CSM) where we parameterize the joint distribution in terms of the derivatives of univariable log-conditionals (scores)
For AR-CSM models, this divergence between data and model distributions can be computed and optimized efficiently, requiring no expensive sampling or adversarial training.
We show with extensive experimental results that it can be applied to density estimation on synthetic data, image generation, image denoising, and training latent variable models with implicit encoders.
arXiv Detail & Related papers (2020-10-24T07:01:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.