Focused-DPO: Enhancing Code Generation Through Focused Preference Optimization on Error-Prone Points
- URL: http://arxiv.org/abs/2502.11475v1
- Date: Mon, 17 Feb 2025 06:16:02 GMT
- Title: Focused-DPO: Enhancing Code Generation Through Focused Preference Optimization on Error-Prone Points
- Authors: Kechi Zhang, Ge Li, Jia Li, Yihong Dong, Jia Li, Zhi Jin,
- Abstract summary: We introduce Focused-DPO, a framework that enhances code generation by directing preference optimization towards critical error-prone areas.
By focusing on error-prone points, Focused-DPO advances the accuracy and functionality of model-generated code.
- Score: 51.40935517552926
- License:
- Abstract: Code generation models have shown significant potential for automating programming tasks. However, the challenge of generating accurate and reliable code persists due to the highly complex and long-reasoning nature of the task. Even state-of-the-art models often fail in code generation due to small errors, which can drastically affect the overall functionality of code. Our study identifies that current models tend to produce errors concentrated at specific error-prone points, which significantly impacts the accuracy of the generated code. To address this issue, we introduce Focused-DPO, a framework that enhances code generation by directing preference optimization towards these critical error-prone areas. This approach builds on Direct Preference Optimization, emphasizing accuracy in parts prone to errors. Additionally, we develop a method called Error-Point Identification, which constructs a dataset that targets these problematic points without requiring costly human annotations. Our experiments on benchmarks such as HumanEval(+), MBPP(+), and LiveCodeBench demonstrate that Focused-DPO significantly improves the precision and reliability of code generation, reducing common errors and enhancing overall code quality. By focusing on error-prone points, Focused-DPO advances the accuracy and functionality of model-generated code.
Related papers
- CodeDPO: Aligning Code Models with Self Generated and Verified Source Code [52.70310361822519]
We propose CodeDPO, a framework that integrates preference learning into code generation to improve two key code preference factors: code correctness and efficiency.
CodeDPO employs a novel dataset construction method, utilizing a self-generation-and-validation mechanism that simultaneously generates and evaluates code and test cases.
arXiv Detail & Related papers (2024-10-08T01:36:15Z) - Understanding Defects in Generated Codes by Language Models [0.669087470775851]
This study categorizes and analyzes 367 identified defects from code snippets generated by Large Language Models.
Error categories indicate key areas where LLMs frequently fail, underscoring the need for targeted improvements.
This paper implemented five prompt engineering techniques, including Scratchpad Prompting, Program of Thoughts Prompting, Chain-of-Thought Prompting, Chain-of-Thought Prompting, and Structured Chain-of-Thought Prompting.
arXiv Detail & Related papers (2024-08-23T21:10:09Z) - PID Control-Based Self-Healing to Improve the Robustness of Large Language Models [23.418411870842178]
Minor perturbations can significantly reduce the performance of well-trained language models.
We construct a computationally efficient self-healing process to correct undesired model behavior.
The proposed PID control-based self-healing is a low cost framework that improves the robustness of pre-trained large language models.
arXiv Detail & Related papers (2024-03-31T23:46:51Z) - Precision-Recall Divergence Optimization for Generative Modeling with
GANs and Normalizing Flows [54.050498411883495]
We develop a novel training method for generative models, such as Generative Adversarial Networks and Normalizing Flows.
We show that achieving a specified precision-recall trade-off corresponds to minimizing a unique $f$-divergence from a family we call the textitPR-divergences.
Our approach improves the performance of existing state-of-the-art models like BigGAN in terms of either precision or recall when tested on datasets such as ImageNet.
arXiv Detail & Related papers (2023-05-30T10:07:17Z) - On the Efficacy of Generalization Error Prediction Scoring Functions [33.24980750651318]
Generalization error predictors (GEPs) aim to predict model performance on unseen distributions by deriving dataset-level error estimates from sample-level scores.
We rigorously study the effectiveness of popular scoring functions (confidence, local manifold smoothness, model agreement) independent of mechanism choice.
arXiv Detail & Related papers (2023-03-23T18:08:44Z) - Execution-based Code Generation using Deep Reinforcement Learning [8.085533911328577]
PPOCoder is a new framework for code generation that combines pre-trained PL models with Proximal Policy Optimization.
PPOCoder seamlessly integrates external code-specific knowledge into the model optimization process.
It's important to note that PPOCoder is a task-agnostic and model-agnostic framework that can be used across different code generation tasks and PLs.
arXiv Detail & Related papers (2023-01-31T18:02:26Z) - ReCode: Robustness Evaluation of Code Generation Models [90.10436771217243]
We propose ReCode, a comprehensive robustness evaluation benchmark for code generation models.
We customize over 30 transformations specifically for code on docstrings, function and variable names, code syntax, and code format.
With human annotators, we verified that over 90% of the perturbed prompts do not alter the semantic meaning of the original prompt.
arXiv Detail & Related papers (2022-12-20T14:11:31Z) - CodeRL: Mastering Code Generation through Pretrained Models and Deep
Reinforcement Learning [92.36705236706678]
"CodeRL" is a new framework for program synthesis tasks through pretrained LMs and deep reinforcement learning.
During inference, we introduce a new generation procedure with a critical sampling strategy.
For the model backbones, we extended the encoder-decoder architecture of CodeT5 with enhanced learning objectives.
arXiv Detail & Related papers (2022-07-05T02:42:15Z) - Modeling the Second Player in Distributionally Robust Optimization [90.25995710696425]
We argue for the use of neural generative models to characterize the worst-case distribution.
This approach poses a number of implementation and optimization challenges.
We find that the proposed approach yields models that are more robust than comparable baselines.
arXiv Detail & Related papers (2021-03-18T14:26:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.