Dictionary-Learning-Based Data Pruning for System Identification
- URL: http://arxiv.org/abs/2502.11484v2
- Date: Mon, 21 Jul 2025 11:33:31 GMT
- Title: Dictionary-Learning-Based Data Pruning for System Identification
- Authors: Tingna Wang, Sikai Zhang, Mingming Song, Limin Sun,
- Abstract summary: Time series data is represented by some representative samples, called atoms, via dictionary learning.<n>Time series data is represented by some representative samples, called atoms, via dictionary learning.<n>It is found that the proposed method significantly outperforms the random pruning method.
- Score: 4.863450849963537
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: System identification is normally involved in augmenting time series data by time shifting and nonlinearisation (e.g., polynomial basis), both of which introduce redundancy in features and samples. Many research works focus on reducing redundancy feature-wise, while less attention is paid to sample-wise redundancy. This paper proposes a novel data pruning method, called mini-batch FastCan, to reduce sample-wise redundancy based on dictionary learning. Time series data is represented by some representative samples, called atoms, via dictionary learning. The useful samples are selected based on their correlation with the atoms. The method is tested on one simulated dataset and two benchmark datasets. The R-squared between the coefficients of models trained on the full datasets and the coefficients of models trained on pruned datasets is adopted to evaluate the performance of data pruning methods. It is found that the proposed method significantly outperforms the random pruning method.
Related papers
- Adapt-$\infty$: Scalable Lifelong Multimodal Instruction Tuning via Dynamic Data Selection [89.42023974249122]
Adapt-$infty$ is a new multi-way and adaptive data selection approach for Lifelong Instruction Tuning.
We construct pseudo-skill clusters by grouping gradient-based sample vectors.
We select the best-performing data selector for each skill cluster from a pool of selector experts.
arXiv Detail & Related papers (2024-10-14T15:48:09Z) - Noisy Correspondence Learning with Self-Reinforcing Errors Mitigation [63.180725016463974]
Cross-modal retrieval relies on well-matched large-scale datasets that are laborious in practice.
We introduce a novel noisy correspondence learning framework, namely textbfSelf-textbfReinforcing textbfErrors textbfMitigation (SREM)
arXiv Detail & Related papers (2023-12-27T09:03:43Z) - Deep Ensembles Meets Quantile Regression: Uncertainty-aware Imputation for Time Series [45.76310830281876]
We propose Quantile Sub-Ensembles, a novel method to estimate uncertainty with ensemble of quantile-regression-based task networks.
Our method not only produces accurate imputations that is robust to high missing rates, but also is computationally efficient due to the fast training of its non-generative model.
arXiv Detail & Related papers (2023-12-03T05:52:30Z) - Towards Free Data Selection with General-Purpose Models [71.92151210413374]
A desirable data selection algorithm can efficiently choose the most informative samples to maximize the utility of limited annotation budgets.
Current approaches, represented by active learning methods, typically follow a cumbersome pipeline that iterates the time-consuming model training and batch data selection repeatedly.
FreeSel bypasses the heavy batch selection process, achieving a significant improvement in efficiency and being 530x faster than existing active learning methods.
arXiv Detail & Related papers (2023-09-29T15:50:14Z) - Improved Distribution Matching for Dataset Condensation [91.55972945798531]
We propose a novel dataset condensation method based on distribution matching.
Our simple yet effective method outperforms most previous optimization-oriented methods with much fewer computational resources.
arXiv Detail & Related papers (2023-07-19T04:07:33Z) - Exploring Data Redundancy in Real-world Image Classification through
Data Selection [20.389636181891515]
Deep learning models often require large amounts of data for training, leading to increased costs.
We present two data valuation metrics based on Synaptic Intelligence and gradient norms, respectively, to study redundancy in real-world image data.
Online and offline data selection algorithms are then proposed via clustering and grouping based on the examined data values.
arXiv Detail & Related papers (2023-06-25T03:31:05Z) - Repeated Random Sampling for Minimizing the Time-to-Accuracy of Learning [28.042568086423298]
Repeated Sampling of Random Subsets (RS2) is a powerful yet overlooked random sampling strategy.
We test RS2 against thirty state-of-the-art data pruning and data distillation methods across four datasets including ImageNet.
Our results demonstrate that RS2 significantly reduces time-to-accuracy compared to existing techniques.
arXiv Detail & Related papers (2023-05-28T20:38:13Z) - Learning from Data with Noisy Labels Using Temporal Self-Ensemble [11.245833546360386]
Deep neural networks (DNNs) have an enormous capacity to memorize noisy labels.
Current state-of-the-art methods present a co-training scheme that trains dual networks using samples associated with small losses.
We propose a simple yet effective robust training scheme that operates by training only a single network.
arXiv Detail & Related papers (2022-07-21T08:16:31Z) - Dictionary Learning Using Rank-One Atomic Decomposition (ROAD) [6.367823813868024]
Dictionary learning aims at seeking a dictionary under which the training data can be sparsely represented.
Road outperforms other benchmark algorithms for both synthetic data and real data.
arXiv Detail & Related papers (2021-10-25T10:29:52Z) - SreaMRAK a Streaming Multi-Resolution Adaptive Kernel Algorithm [60.61943386819384]
Existing implementations of KRR require that all the data is stored in the main memory.
We propose StreaMRAK - a streaming version of KRR.
We present a showcase study on two synthetic problems and the prediction of the trajectory of a double pendulum.
arXiv Detail & Related papers (2021-08-23T21:03:09Z) - Learning from Incomplete Features by Simultaneous Training of Neural
Networks and Sparse Coding [24.3769047873156]
This paper addresses the problem of training a classifier on a dataset with incomplete features.
We assume that different subsets of features (random or structured) are available at each data instance.
A new supervised learning method is developed to train a general classifier, using only a subset of features per sample.
arXiv Detail & Related papers (2020-11-28T02:20:39Z) - Evaluating representations by the complexity of learning low-loss
predictors [55.94170724668857]
We consider the problem of evaluating representations of data for use in solving a downstream task.
We propose to measure the quality of a representation by the complexity of learning a predictor on top of the representation that achieves low loss on a task of interest.
arXiv Detail & Related papers (2020-09-15T22:06:58Z) - Automatic Recall Machines: Internal Replay, Continual Learning and the
Brain [104.38824285741248]
Replay in neural networks involves training on sequential data with memorized samples, which counteracts forgetting of previous behavior caused by non-stationarity.
We present a method where these auxiliary samples are generated on the fly, given only the model that is being trained for the assessed objective.
Instead the implicit memory of learned samples within the assessed model itself is exploited.
arXiv Detail & Related papers (2020-06-22T15:07:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.