Why Vision Language Models Struggle with Visual Arithmetic? Towards Enhanced Chart and Geometry Understanding
- URL: http://arxiv.org/abs/2502.11492v1
- Date: Mon, 17 Feb 2025 06:54:49 GMT
- Title: Why Vision Language Models Struggle with Visual Arithmetic? Towards Enhanced Chart and Geometry Understanding
- Authors: Kung-Hsiang Huang, Can Qin, Haoyi Qiu, Philippe Laban, Shafiq Joty, Caiming Xiong, Chien-Sheng Wu,
- Abstract summary: Vision Language Models (VLMs) have achieved remarkable progress in multimodal tasks.
They often struggle with visual arithmetic, seemingly simple capabilities like object counting or length comparison.
We propose CogAlign, a novel post-training strategy inspired by Piaget's theory of cognitive development.
- Score: 94.64781599202882
- License:
- Abstract: Vision Language Models (VLMs) have achieved remarkable progress in multimodal tasks, yet they often struggle with visual arithmetic, seemingly simple capabilities like object counting or length comparison, which are essential for relevant complex tasks like chart understanding and geometric reasoning. In this work, we first investigate the root causes of this deficiency through a suite of probing tasks focusing on basic visual arithmetic. Our analysis reveals that while pre-trained vision encoders typically capture sufficient information, the text decoder often fails to decode it correctly for arithmetic reasoning. To address this, we propose CogAlign, a novel post-training strategy inspired by Piaget's theory of cognitive development. CogAlign trains VLMs to recognize invariant properties under visual transformations. We demonstrate that this approach significantly improves the performance of three diverse VLMs on our proposed probing tasks. Furthermore, CogAlign enhances performance by an average of 4.6% on CHOCOLATE and 2.9% on MATH-VISION, outperforming or matching supervised fine-tuning methods while requiring only 60% less training data. These results highlight the effectiveness and generalizability of CogAlign in improving fundamental visual arithmetic capabilities and their transfer to downstream tasks.
Related papers
- Open Eyes, Then Reason: Fine-grained Visual Mathematical Understanding in MLLMs [62.875934732547435]
Current large language models (MLLMs) often underperform on mathematical problem-solving tasks that require fine-grained visual understanding.
In this paper, we evaluate the visual grounding capabilities of state-of-the-art MLLMs and reveal a significant negative correlation between visual grounding accuracy and problem-solving performance.
We propose a novel approach, SVE-Math, featuring a geometric-grounded vision encoder and a feature router that dynamically adjusts the contribution of hierarchical visual feature maps.
arXiv Detail & Related papers (2025-01-11T04:08:44Z) - Generalizing from SIMPLE to HARD Visual Reasoning: Can We Mitigate Modality Imbalance in VLMs? [48.41029452721923]
Vision Language Models (VLMs) are impressive in tasks such as visual question answering (VQA) and image captioning.
Their ability to apply multi-step reasoning to images has lagged, giving rise to perceptions of modality imbalance or brittleness.
arXiv Detail & Related papers (2025-01-05T21:36:38Z) - Intriguing Properties of Large Language and Vision Models [18.449076451976236]
Large language and vision models (LLVMs) have received significant attention and development efforts due to their remarkable generalization performance.
Despite their achievements in advanced reasoning tasks, their performance on fundamental perception-related tasks remains surprisingly low.
We investigate this question by evaluating the most common LLVM's families (i.e., LLaVA) across 10 evaluation benchmarks.
arXiv Detail & Related papers (2024-10-07T05:07:01Z) - Describe-then-Reason: Improving Multimodal Mathematical Reasoning through Visual Comprehension Training [24.989732666940153]
Open-source multimodal large language models (MLLMs) excel in various tasks involving textual and visual inputs.
MLLMs still struggle with complex multimodal mathematical reasoning, lagging behind proprietary models like GPT-4V(ision) and Gemini-Pro.
We propose a two-step training pipeline VCAR, which emphasizes the Visual Reasoning training in addition to mathematical learning.
arXiv Detail & Related papers (2024-04-22T21:59:35Z) - Debiasing Multimodal Large Language Models [61.6896704217147]
Large Vision-Language Models (LVLMs) have become indispensable tools in computer vision and natural language processing.
Our investigation reveals a noteworthy bias in the generated content, where the output is primarily influenced by the underlying Large Language Models (LLMs) prior to the input image.
To rectify these biases and redirect the model's focus toward vision information, we introduce two simple, training-free strategies.
arXiv Detail & Related papers (2024-03-08T12:35:07Z) - PerceptionGPT: Effectively Fusing Visual Perception into LLM [31.34127196055722]
The integration of visual inputs with large language models (LLMs) has led to remarkable advancements in multi-modal capabilities, giving rise to visual large language models (VLLMs)
We present a novel end-to-end framework named PerceptionGPT, which efficiently equips the VLLMs with visual perception abilities.
Our approach significantly alleviates the training difficulty suffered by previous approaches that formulate the visual outputs as discrete tokens.
arXiv Detail & Related papers (2023-11-11T16:59:20Z) - What Makes Pre-Trained Visual Representations Successful for Robust
Manipulation? [57.92924256181857]
We find that visual representations designed for manipulation and control tasks do not necessarily generalize under subtle changes in lighting and scene texture.
We find that emergent segmentation ability is a strong predictor of out-of-distribution generalization among ViT models.
arXiv Detail & Related papers (2023-11-03T18:09:08Z) - Task Formulation Matters When Learning Continually: A Case Study in
Visual Question Answering [58.82325933356066]
Continual learning aims to train a model incrementally on a sequence of tasks without forgetting previous knowledge.
We present a detailed study of how different settings affect performance for Visual Question Answering.
arXiv Detail & Related papers (2022-09-30T19:12:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.