Caption This, Reason That: VLMs Caught in the Middle
- URL: http://arxiv.org/abs/2505.21538v1
- Date: Sat, 24 May 2025 14:25:48 GMT
- Title: Caption This, Reason That: VLMs Caught in the Middle
- Authors: Zihan Weng, Lucas Gomez, Taylor Whittington Webb, Pouya Bashivan,
- Abstract summary: Vision-Language Models (VLMs) have shown remarkable progress in visual understanding in recent years.<n>They still lag behind human capabilities in specific visual tasks such as counting or relational reasoning.<n>We analyze VLM performance along core cognitive axes: Perception, Attention, and Memory.
- Score: 3.4820139118440676
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Vision-Language Models (VLMs) have shown remarkable progress in visual understanding in recent years. Yet, they still lag behind human capabilities in specific visual tasks such as counting or relational reasoning. To understand the underlying limitations, we adopt methodologies from cognitive science, analyzing VLM performance along core cognitive axes: Perception, Attention, and Memory. Using a suite of tasks targeting these abilities, we evaluate state-of-the-art VLMs, including GPT-4o. Our analysis reveals distinct cognitive profiles: while advanced models approach ceiling performance on some tasks (e.g. category identification), a significant gap persists, particularly in tasks requiring spatial understanding or selective attention. Investigating the source of these failures and potential methods for improvement, we employ a vision-text decoupling analysis, finding that models struggling with direct visual reasoning show marked improvement when reasoning over their own generated text captions. These experiments reveal a strong need for improved VLM Chain-of-Thought (CoT) abilities, even in models that consistently exceed human performance. Furthermore, we demonstrate the potential of targeted fine-tuning on composite visual reasoning tasks and show that fine-tuning smaller VLMs substantially improves core cognitive abilities. While this improvement does not translate to large enhancements on challenging, out-of-distribution benchmarks, we show broadly that VLM performance on our datasets strongly correlates with performance on these other benchmarks. Our work provides a detailed analysis of VLM cognitive strengths and weaknesses and identifies key bottlenecks in simultaneous perception and reasoning while also providing an effective and simple solution.
Related papers
- VLM4D: Towards Spatiotemporal Awareness in Vision Language Models [66.833085504228]
We introduce V4DLM, the first benchmark specifically designed to evaluate visual language models (VLMs)<n>Our benchmark comprises diverse real-world and synthetic videos accompanied by carefully curated question-answer pairs.<n>We identify significant performance gaps compared to human baselines, highlighting fundamental deficiencies in existing models.
arXiv Detail & Related papers (2025-08-04T06:06:06Z) - Response Wide Shut? Surprising Observations in Basic Vision Language Model Capabilities [54.94982467313341]
Vision-language Models (VLMs) have emerged as general-purpose tools for addressing a variety of complex computer vision problems.<n>We set out to understand the limitations of SoTA VLMs on fundamental visual tasks by constructing a series of tests that probe which components of design, specifically, may be lacking.
arXiv Detail & Related papers (2025-07-10T15:26:41Z) - Benchmarking Large Vision-Language Models on Fine-Grained Image Tasks: A Comprehensive Evaluation [53.84282335629258]
We introduce a comprehensive fine-grained evaluation benchmark, i.e., FG-BMK, comprising 1.01 million questions and 0.33 million images.<n>Our evaluation systematically examines LVLMs from both human-oriented and machine-oriented perspectives.<n>We uncover key findings regarding the influence of training paradigms, modality alignment, perturbation susceptibility, and fine-grained category reasoning on task performance.
arXiv Detail & Related papers (2025-04-21T09:30:41Z) - Beyond Semantics: Rediscovering Spatial Awareness in Vision-Language Models [10.792834356227118]
Vision-Language Models (VLMs) excel at identifying and describing objects but struggle with spatial reasoning.<n>Inspired by the dual-pathway (ventral-dorsal) model of human vision, we investigate why VLMs fail spatial tasks despite strong object recognition capabilities.
arXiv Detail & Related papers (2025-03-21T17:51:14Z) - DeepPerception: Advancing R1-like Cognitive Visual Perception in MLLMs for Knowledge-Intensive Visual Grounding [61.26026947423187]
Human experts excel at fine-grained visual discrimination by leveraging domain knowledge to refine perceptual features.<n>Current Multimodal Large Language Models (MLLMs) struggle to integrate reasoning into visual perception.<n>We propose DeepPerception, an MLLM enhanced with cognitive visual perception capabilities.
arXiv Detail & Related papers (2025-03-17T04:06:34Z) - VisFactor: Benchmarking Fundamental Visual Cognition in Multimodal Large Language Models [62.667142971664575]
We introduce VisFactor, a novel benchmark derived from the Factor-Referenced Cognitive Test (FRCT)<n>VisFactor digitalizes vision-related FRCT subtests to systematically evaluate MLLMs across essential visual cognitive tasks.<n>We present a comprehensive evaluation of state-of-the-art MLLMs, such as GPT-4o, Gemini-Pro, and Qwen-VL.
arXiv Detail & Related papers (2025-02-23T04:21:32Z) - VLM2-Bench: A Closer Look at How Well VLMs Implicitly Link Explicit Matching Visual Cues [34.95077625513563]
We introduce textbfVLM2-Bench, a benchmark designed to assess whether vision-language models can Visually Link Matching cues.<n> Comprehensive evaluation across twelve VLMs, along with further analysis of various language-side and vision-side prompting methods, leads to a total of eight key findings.<n>We identify critical challenges in models' ability to link visual cues, highlighting a significant performance gap.
arXiv Detail & Related papers (2025-02-17T17:57:50Z) - Why Vision Language Models Struggle with Visual Arithmetic? Towards Enhanced Chart and Geometry Understanding [94.64781599202882]
Vision Language Models (VLMs) have achieved remarkable progress in multimodal tasks.<n>They often struggle with visual arithmetic, seemingly simple capabilities like object counting or length comparison.<n>We propose CogAlign, a novel post-training strategy inspired by Piaget's theory of cognitive development.
arXiv Detail & Related papers (2025-02-17T06:54:49Z) - iVISPAR -- An Interactive Visual-Spatial Reasoning Benchmark for VLMs [4.381263829108405]
Vision-Language Models (VLMs) are known to struggle with spatial reasoning and visual alignment.<n>We introduce iVISPAR, an interactive multi-modal benchmark designed to evaluate the spatial reasoning capabilities of VLMs acting as agents.
arXiv Detail & Related papers (2025-02-05T14:29:01Z) - A Cognitive Paradigm Approach to Probe the Perception-Reasoning Interface in VLMs [3.2228025627337864]
This paper introduces a structured evaluation framework to dissect the perception-reasoning interface in Vision-Language Models (VLMs)<n>We propose three distinct evaluation paradigms, mirroring human problem-solving strategies.<n>Applying this framework, we demonstrate that CA, leveraging powerful language models for reasoning over rich, independently generated descriptions, achieves new state-of-the-art (SOTA) performance.
arXiv Detail & Related papers (2025-01-23T12:42:42Z) - Intriguing Properties of Large Language and Vision Models [18.449076451976236]
Large language and vision models (LLVMs) have received significant attention and development efforts due to their remarkable generalization performance.
Despite their achievements in advanced reasoning tasks, their performance on fundamental perception-related tasks remains surprisingly low.
We investigate this question by evaluating the most common LLVM's families (i.e., LLaVA) across 10 evaluation benchmarks.
arXiv Detail & Related papers (2024-10-07T05:07:01Z) - Measuring and Improving Chain-of-Thought Reasoning in Vision-Language Models [61.28463542324576]
Vision-language models (VLMs) have recently demonstrated strong efficacy as visual assistants that can generate human-like outputs.
We evaluate existing state-of-the-art VLMs and find that even the best-performing model is unable to demonstrate strong visual reasoning capabilities and consistency.
We propose a two-stage training framework aimed at improving both the reasoning performance and consistency of VLMs.
arXiv Detail & Related papers (2023-09-08T17:49:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.