Accelerated Gradient-based Design Optimization Via Differentiable Physics-Informed Neural Operator: A Composites Autoclave Processing Case Study
- URL: http://arxiv.org/abs/2502.11504v1
- Date: Mon, 17 Feb 2025 07:11:46 GMT
- Title: Accelerated Gradient-based Design Optimization Via Differentiable Physics-Informed Neural Operator: A Composites Autoclave Processing Case Study
- Authors: Janak M. Patel, Milad Ramezankhani, Anirudh Deodhar, Dagnachew Birru,
- Abstract summary: We introduce a novel Physics-Informed DeepONet (PIDON) architecture to effectively model the nonlinear behavior of complex engineering systems.
We demonstrate the effectiveness of this framework in the optimization of aerospace-grade composites curing processes achieving a 3x speedup.
The proposed model has the potential to be used as a scalable and efficient optimization tool for broader applications in advanced engineering and digital twin systems.
- Score: 0.0
- License:
- Abstract: Simulation and optimization are crucial for advancing the engineering design of complex systems and processes. Traditional optimization methods require substantial computational time and effort due to their reliance on resource-intensive simulations, such as finite element analysis, and the complexity of rigorous optimization algorithms. Data-agnostic AI-based surrogate models, such as Physics-Informed Neural Operators (PINOs), offer a promising alternative to these conventional simulations, providing drastically reduced inference time, unparalleled data efficiency, and zero-shot super-resolution capability. However, the predictive accuracy of these models is often constrained to small, low-dimensional design spaces or systems with relatively simple dynamics. To address this, we introduce a novel Physics-Informed DeepONet (PIDON) architecture, which extends the capabilities of conventional neural operators to effectively model the nonlinear behavior of complex engineering systems across high-dimensional design spaces and a wide range of dynamic design configurations. This new architecture outperforms existing SOTA models, enabling better predictions across broader design spaces. Leveraging PIDON's differentiability, we integrate a gradient-based optimization approach using the Adam optimizer to efficiently determine optimal design variables. This forms an end-to-end gradient-based optimization framework that accelerates the design process while enhancing scalability and efficiency. We demonstrate the effectiveness of this framework in the optimization of aerospace-grade composites curing processes achieving a 3x speedup in obtaining optimal design variables compared to gradient-free methods. Beyond composites processing, the proposed model has the potential to be used as a scalable and efficient optimization tool for broader applications in advanced engineering and digital twin systems.
Related papers
- A Survey on Inference Optimization Techniques for Mixture of Experts Models [50.40325411764262]
Large-scale Mixture of Experts (MoE) models offer enhanced model capacity and computational efficiency through conditional computation.
deploying and running inference on these models presents significant challenges in computational resources, latency, and energy efficiency.
This survey analyzes optimization techniques for MoE models across the entire system stack.
arXiv Detail & Related papers (2024-12-18T14:11:15Z) - Diffusion Model for Data-Driven Black-Box Optimization [54.25693582870226]
We focus on diffusion models, a powerful generative AI technology, and investigate their potential for black-box optimization.
We study two practical types of labels: 1) noisy measurements of a real-valued reward function and 2) human preference based on pairwise comparisons.
Our proposed method reformulates the design optimization problem into a conditional sampling problem, which allows us to leverage the power of diffusion models.
arXiv Detail & Related papers (2024-03-20T00:41:12Z) - Compositional Generative Inverse Design [69.22782875567547]
Inverse design, where we seek to design input variables in order to optimize an underlying objective function, is an important problem.
We show that by instead optimizing over the learned energy function captured by the diffusion model, we can avoid such adversarial examples.
In an N-body interaction task and a challenging 2D multi-airfoil design task, we demonstrate that by composing the learned diffusion model at test time, our method allows us to design initial states and boundary shapes.
arXiv Detail & Related papers (2024-01-24T01:33:39Z) - Efficient Inverse Design Optimization through Multi-fidelity Simulations, Machine Learning, and Search Space Reduction Strategies [0.8646443773218541]
This paper introduces a methodology designed to augment the inverse design optimization process in scenarios constrained by limited compute.
The proposed methodology is analyzed on two distinct engineering inverse design problems: airfoil inverse design and the scalar field reconstruction problem.
Notably, this method is adaptable across any inverse design application, facilitating a synergy between a representative low-fidelity ML model, and high-fidelity simulation, and can be seamlessly applied across any variety of population-based optimization algorithms.
arXiv Detail & Related papers (2023-12-06T18:20:46Z) - Diffusion Generative Inverse Design [28.04683283070957]
Inverse design refers to the problem of optimizing the input of an objective function in order to enact a target outcome.
Recent developments in learned graph neural networks (GNNs) can be used for accurate, efficient, differentiable estimation of simulator dynamics.
We show how denoising diffusion diffusion models can be used to solve inverse design problems efficiently and propose a particle sampling algorithm for further improving their efficiency.
arXiv Detail & Related papers (2023-09-05T08:32:07Z) - Photonic Structures Optimization Using Highly Data-Efficient Deep
Learning: Application To Nanofin And Annular Groove Phase Masks [40.11095094521714]
Metasurfaces offer a flexible framework for the manipulation of light properties in the realm of thin film optics.
This study aims to introduce a surrogate optimization framework for these devices.
The framework is applied to develop two kinds of vortex phase masks (VPMs) tailored for application in astronomical high-contrast imaging.
arXiv Detail & Related papers (2023-09-05T07:19:14Z) - Aligning Optimization Trajectories with Diffusion Models for Constrained
Design Generation [17.164961143132473]
We introduce a learning framework that demonstrates the efficacy of aligning the sampling trajectory of diffusion models with the optimization trajectory derived from traditional physics-based methods.
Our method allows for generating feasible and high-performance designs in as few as two steps without the need for expensive preprocessing, external surrogate models, or additional labeled data.
Our results demonstrate that TA outperforms state-of-the-art deep generative models on in-distribution configurations and halves the inference computational cost.
arXiv Detail & Related papers (2023-05-29T09:16:07Z) - Machine Learning Framework for Quantum Sampling of Highly-Constrained,
Continuous Optimization Problems [101.18253437732933]
We develop a generic, machine learning-based framework for mapping continuous-space inverse design problems into surrogate unconstrained binary optimization problems.
We showcase the framework's performance on two inverse design problems by optimizing thermal emitter topologies for thermophotovoltaic applications and (ii) diffractive meta-gratings for highly efficient beam steering.
arXiv Detail & Related papers (2021-05-06T02:22:23Z) - Speeding up Computational Morphogenesis with Online Neural Synthetic
Gradients [51.42959998304931]
A wide range of modern science and engineering applications are formulated as optimization problems with a system of partial differential equations (PDEs) as constraints.
These PDE-constrained optimization problems are typically solved in a standard discretize-then-optimize approach.
We propose a general framework to speed up PDE-constrained optimization using online neural synthetic gradients (ONSG) with a novel two-scale optimization scheme.
arXiv Detail & Related papers (2021-04-25T22:43:51Z) - Enhanced data efficiency using deep neural networks and Gaussian
processes for aerodynamic design optimization [0.0]
Adjoint-based optimization methods are attractive for aerodynamic shape design.
They can become prohibitively expensive when multiple optimization problems are being solved.
We propose a machine learning enabled, surrogate-based framework that replaces the expensive adjoint solver.
arXiv Detail & Related papers (2020-08-15T15:09:21Z) - Automatically Learning Compact Quality-aware Surrogates for Optimization
Problems [55.94450542785096]
Solving optimization problems with unknown parameters requires learning a predictive model to predict the values of the unknown parameters and then solving the problem using these values.
Recent work has shown that including the optimization problem as a layer in a complex training model pipeline results in predictions of iteration of unobserved decision making.
We show that we can improve solution quality by learning a low-dimensional surrogate model of a large optimization problem.
arXiv Detail & Related papers (2020-06-18T19:11:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.