論文の概要: DR.GAP: Mitigating Bias in Large Language Models using Gender-Aware Prompting with Demonstration and Reasoning
- arxiv url: http://arxiv.org/abs/2502.11603v1
- Date: Mon, 17 Feb 2025 09:43:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-18 14:15:59.542395
- Title: DR.GAP: Mitigating Bias in Large Language Models using Gender-Aware Prompting with Demonstration and Reasoning
- Title(参考訳): DR.GAP:Demonstration and Reasoningを用いたジェンダー・アウェア・プロンプトによる大規模言語モデルのバイアス軽減
- Authors: Hongye Qiu, Yue Xu, Meikang Qiu, Wenjie Wang,
- Abstract要約: 大規模言語モデル(LLM)は、強力な自然言語処理能力を持つが、性バイアスを含む社会的バイアスを継承し、増幅し、公正さを懸念する。
本稿では,性差を緩和し,モデル性能を保ちながら,性差を緩和する手法であるDR.GAP(Demonstration and Reasoning for Gender-Aware Prompting)を提案する。
- 参考スコア(独自算出の注目度): 14.690803375468661
- License:
- Abstract: Large Language Models (LLMs) exhibit strong natural language processing capabilities but also inherit and amplify societal biases, including gender bias, raising fairness concerns. Existing debiasing methods face significant limitations: parameter tuning requires access to model weights, prompt-based approaches often degrade model utility, and optimization-based techniques lack generalizability. To address these challenges, we propose DR.GAP (Demonstration and Reasoning for Gender-Aware Prompting), an automated and model-agnostic approach that mitigates gender bias while preserving model performance. DR.GAP selects bias-revealing examples and generates structured reasoning to guide models toward more impartial responses. Extensive experiments on coreference resolution and QA tasks across multiple LLMs (GPT-3.5, Llama3, and Llama2-Alpaca) demonstrate its effectiveness, generalization ability, and robustness. DR.GAP can generalize to vision-language models (VLMs), achieving significant bias reduction.
- Abstract(参考訳): 大規模言語モデル(LLM)は、強力な自然言語処理能力を持つが、性バイアスを含む社会的バイアスを継承し、増幅し、公正さを懸念する。
パラメータチューニングにはモデルウェイトへのアクセスが必要であり、プロンプトベースのアプローチはしばしばモデルユーティリティを劣化させ、最適化ベースの手法は一般化性に欠ける。
これらの課題に対処するため、モデル性能を維持しながら性差を緩和する自動的かつモデルに依存しないアプローチであるDR.GAP(Demonstration and Reasoning for Gender-Aware Prompting)を提案する。
DR.GAPはバイアス検出の例を選択し、モデルをより公平な反応に導く構造的推論を生成する。
複数のLLM(GPT-3.5、Llama3、Llama2-Alpaca)におけるコア参照分解能およびQAタスクの広範な実験は、その有効性、一般化能力、堅牢性を示している。
DR.GAPは視覚言語モデル(VLM)に一般化することができ、大きなバイアス低減を実現する。
関連論文リスト
- Towards Resource Efficient and Interpretable Bias Mitigation in Large Language Models [1.787433808079955]
大規模言語モデル (LLM) は、学習データにおいて望ましくないバイアスを持続させる。
本稿では,小さなバイアスとアンチバイアスのエキスパートモデルを利用してバイアスを緩和し,デバイアス信号を得る。
性別、人種、宗教の偏見を緩和する実験は、いくつかの地域および世界的な偏見指標に偏見を減少させる。
論文 参考訳(メタデータ) (2024-12-02T16:56:08Z) - The Root Shapes the Fruit: On the Persistence of Gender-Exclusive Harms in Aligned Language Models [58.130894823145205]
我々はトランスジェンダー、ノンバイナリ、その他のジェンダー・ディバースのアイデンティティを中心とし、アライメント手順が既存のジェンダー・ディバースバイアスとどのように相互作用するかを検討する。
以上の結果から,DPO対応モデルは特に教師付き微調整に敏感であることが示唆された。
DPOとより広範なアライメントプラクティスに合わせたレコメンデーションで締めくくります。
論文 参考訳(メタデータ) (2024-11-06T06:50:50Z) - Investigating Implicit Bias in Large Language Models: A Large-Scale Study of Over 50 LLMs [0.0]
大規模言語モデル(LLM)は幅広いタスクで採用されている。
最近の研究では、LLMは明示的な偏見評価をパスしても暗黙の偏見を抑えることができることが示されている。
この研究は、新しい言語モデルやより大きな言語モデルが自動的にバイアスを減らさないことを強調している。
論文 参考訳(メタデータ) (2024-10-13T03:43:18Z) - Alice in Wonderland: Simple Tasks Showing Complete Reasoning Breakdown in State-Of-the-Art Large Language Models [13.532180752491954]
利用可能な最大規模でトレーニングされた最先端モデルの機能と推論能力の劇的な破壊を実演する。
モデルは、問題の解決に影響を与えない、微妙な問題バリエーションでさえも強い変動を示すため、その分解は劇的である。
これらの初期観測は、現在世代の大言語モデルが主張する能力の再評価を急激に促すものである。
論文 参考訳(メタデータ) (2024-06-04T07:43:33Z) - Debiasing Multimodal Large Language Models [61.6896704217147]
LVLM(Large Vision-Language Models)は、コンピュータビジョンや自然言語処理において欠かせないツールとなっている。
本研究は,入力画像に先行するLarge Language Models (LLM) の影響を主に受け,生成したコンテンツに有意なバイアスが生じることを示す。
これらのバイアスを是正し、視覚情報に対するモデルの焦点をリダイレクトするために、我々は2つの単純で訓練のない戦略を導入する。
論文 参考訳(メタデータ) (2024-03-08T12:35:07Z) - AXOLOTL: Fairness through Assisted Self-Debiasing of Large Language
Model Outputs [20.772266479533776]
AXOLOTLはタスクやモデル間で不可知的に動作する新しい後処理フレームワークである。
バイアスを識別し、解像度を提案し、モデルにアウトプットを自己バイアスさせる。
このアプローチは計算コストを最小化し、モデル性能を保存する。
論文 参考訳(メタデータ) (2024-03-01T00:02:37Z) - Self-Debiasing Large Language Models: Zero-Shot Recognition and
Reduction of Stereotypes [73.12947922129261]
ステレオタイピングを減らすために,大規模言語モデルのゼロショット機能を活用している。
自己嫌悪は、9つの異なる社会集団におけるステレオタイピングの度合いを著しく低下させることが示される。
この研究が、バイアス軽減のための他のゼロショット技術に関する調査をオープンにすることを願っている。
論文 参考訳(メタデータ) (2024-02-03T01:40:11Z) - Secrets of RLHF in Large Language Models Part II: Reward Modeling [134.97964938009588]
本稿では,データセットにおける不正確で曖昧な嗜好の影響を軽減するために,一連の新しい手法を紹介する。
また、選択された応答と拒否された応答を区別する報酬モデルの有用性を高めるために、対照的な学習を導入する。
論文 参考訳(メタデータ) (2024-01-11T17:56:59Z) - In-Contextual Gender Bias Suppression for Large Language Models [47.246504807946884]
大きな言語モデル (LLM) は、性バイアスの心配レベルをエンコードしていると報告されている。
手動で設計したテンプレートから構築したプリアンブルを提供することにより,LLMのバイアス発生を防止するバイアス抑制を提案する。
その結果,HellaSwag と COPA による下流タスク性能にバイアス抑制が悪影響があることが判明した。
論文 参考訳(メタデータ) (2023-09-13T18:39:08Z) - Delving into Identify-Emphasize Paradigm for Combating Unknown Bias [52.76758938921129]
同定精度を高めるため,有効バイアス強調スコアリング法(ECS)を提案する。
また, マイニングされたバイアスアライメントとバイアスコンプリケート試料のコントリビューションのバランスをとるために, 勾配アライメント(GA)を提案する。
様々な環境で複数のデータセットで実験を行い、提案されたソリューションが未知のバイアスの影響を軽減することを実証した。
論文 参考訳(メタデータ) (2023-02-22T14:50:24Z) - Debiasing Vision-Language Models via Biased Prompts [79.04467131711775]
本稿では,テキスト埋め込みにおけるバイアスのある方向を投影することで,視覚言語基盤モデルを疎外する一般的な手法を提案する。
偏平投影行列を組み込んだテキストのみをデバイアスすることで、ロバストな分類器と公正な生成モデルが得られることを示す。
論文 参考訳(メタデータ) (2023-01-31T20:09:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。