Identifying Gender Stereotypes and Biases in Automated Translation from English to Italian using Similarity Networks
- URL: http://arxiv.org/abs/2502.11611v1
- Date: Mon, 17 Feb 2025 09:55:32 GMT
- Title: Identifying Gender Stereotypes and Biases in Automated Translation from English to Italian using Similarity Networks
- Authors: Fatemeh Mohammadi, Marta Annamaria Tamborini, Paolo Ceravolo, Costanza Nardocci, Samira Maghool,
- Abstract summary: This paper is a collaborative effort between Linguistics, Law, and Computer Science to evaluate stereotypes and biases in automated translation systems.
We advocate gender-neutral translation as a means to promote gender inclusion and improve the objectivity of machine translation.
- Score: 0.25049267048783647
- License:
- Abstract: This paper is a collaborative effort between Linguistics, Law, and Computer Science to evaluate stereotypes and biases in automated translation systems. We advocate gender-neutral translation as a means to promote gender inclusion and improve the objectivity of machine translation. Our approach focuses on identifying gender bias in English-to-Italian translations. First, we define gender bias following human rights law and linguistics literature. Then we proceed by identifying gender-specific terms such as she/lei and he/lui as key elements. We then evaluate the cosine similarity between these target terms and others in the dataset to reveal the model's perception of semantic relations. Using numerical features, we effectively evaluate the intensity and direction of the bias. Our findings provide tangible insights for developing and training gender-neutral translation algorithms.
Related papers
- Beyond Binary Gender: Evaluating Gender-Inclusive Machine Translation with Ambiguous Attitude Words [85.48043537327258]
Existing machine translation gender bias evaluations are primarily focused on male and female genders.
This study presents a benchmark AmbGIMT (Gender-Inclusive Machine Translation with Ambiguous attitude words)
We propose a novel process to evaluate gender bias based on the Emotional Attitude Score (EAS), which is used to quantify ambiguous attitude words.
arXiv Detail & Related papers (2024-07-23T08:13:51Z) - Leveraging Large Language Models to Measure Gender Representation Bias in Gendered Language Corpora [9.959039325564744]
Gender bias in text corpora can lead to perpetuation and amplification of societal inequalities.
Existing methods to measure gender representation bias in text corpora have mainly been proposed for English.
This paper introduces a novel methodology to quantitatively measure gender representation bias in Spanish corpora.
arXiv Detail & Related papers (2024-06-19T16:30:58Z) - Hi Guys or Hi Folks? Benchmarking Gender-Neutral Machine Translation
with the GeNTE Corpus [15.388894407006852]
Machine translation (MT) often defaults to masculine and stereotypical representations by making undue binary gender assumptions.
Our work addresses the rising demand for inclusive language by focusing head-on on gender-neutral translation from English to Italian.
arXiv Detail & Related papers (2023-10-08T21:44:00Z) - VisoGender: A dataset for benchmarking gender bias in image-text pronoun
resolution [80.57383975987676]
VisoGender is a novel dataset for benchmarking gender bias in vision-language models.
We focus on occupation-related biases within a hegemonic system of binary gender, inspired by Winograd and Winogender schemas.
We benchmark several state-of-the-art vision-language models and find that they demonstrate bias in resolving binary gender in complex scenes.
arXiv Detail & Related papers (2023-06-21T17:59:51Z) - Analyzing Gender Representation in Multilingual Models [59.21915055702203]
We focus on the representation of gender distinctions as a practical case study.
We examine the extent to which the gender concept is encoded in shared subspaces across different languages.
arXiv Detail & Related papers (2022-04-20T00:13:01Z) - Improving Gender Translation Accuracy with Filtered Self-Training [14.938401898546548]
Machine translation systems often output incorrect gender, even when the gender is clear from context.
We propose a gender-filtered self-training technique to improve gender translation accuracy on unambiguously gendered inputs.
arXiv Detail & Related papers (2021-04-15T18:05:29Z) - They, Them, Theirs: Rewriting with Gender-Neutral English [56.14842450974887]
We perform a case study on the singular they, a common way to promote gender inclusion in English.
We show how a model can be trained to produce gender-neutral English with 1% word error rate with no human-labeled data.
arXiv Detail & Related papers (2021-02-12T21:47:48Z) - Neural Machine Translation Doesn't Translate Gender Coreference Right
Unless You Make It [18.148675498274866]
We propose schemes for incorporating explicit word-level gender inflection tags into Neural Machine Translation.
We find that simple existing approaches can over-generalize a gender-feature to multiple entities in a sentence.
We also propose an extension to assess translations of gender-neutral entities from English given a corresponding linguistic convention.
arXiv Detail & Related papers (2020-10-11T20:05:42Z) - Gender Stereotype Reinforcement: Measuring the Gender Bias Conveyed by
Ranking Algorithms [68.85295025020942]
We propose the Gender Stereotype Reinforcement (GSR) measure, which quantifies the tendency of a Search Engines to support gender stereotypes.
GSR is the first specifically tailored measure for Information Retrieval, capable of quantifying representational harms.
arXiv Detail & Related papers (2020-09-02T20:45:04Z) - Multi-Dimensional Gender Bias Classification [67.65551687580552]
Machine learning models can inadvertently learn socially undesirable patterns when training on gender biased text.
We propose a general framework that decomposes gender bias in text along several pragmatic and semantic dimensions.
Using this fine-grained framework, we automatically annotate eight large scale datasets with gender information.
arXiv Detail & Related papers (2020-05-01T21:23:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.