Advancing the heralded photon-number-state characterization by understanding the interplay of experimental settings
- URL: http://arxiv.org/abs/2502.11631v2
- Date: Tue, 15 Apr 2025 11:47:19 GMT
- Title: Advancing the heralded photon-number-state characterization by understanding the interplay of experimental settings
- Authors: Daniel Borrero Landazabal, Kaisa Laiho,
- Abstract summary: We theoretically explore the properties of heralded number states including up to three photons generated from single-mode twin beams.<n>Our results identify the optimal parameter regions for generating high quality photon-number states by heralding and provide useful insights for advancing their use in quantum technologies.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We theoretically explore the properties of heralded number states including up to three photons that are generated from single-mode twin beams. We investigate the effects of different parameters involved in the state preparation by using the fidelity, normalized second-order factorial moment of photon number for the heralded state $(g^{(2)}_h)$, and photon-number parity as figures of merit. Especially, the photon-number parity offers a practical and robust tool for inferring the target state quality by capturing the contamination of all undesired photon-number contributions. We focus on expressing our results in terms of experimentally easily accessible parameters such as the coincidences-to-accidentals ratio and the detection efficiencies. Our results identify the optimal parameter regions for generating high quality photon-number states by heralding and provide useful insights for advancing their use in quantum technologies.
Related papers
- Linearly Multiplexed Photon Number Resolving Single-photon Detectors Array [31.003493872880963]
Photon Number Resolving Detectors (PNRDs) are devices capable of measuring the number of photons present in an incident optical beam.
This paper explores the performance and design considerations of a linearly multiplexed photon number-resolving single-photon detector array.
arXiv Detail & Related papers (2024-08-22T12:41:12Z) - The Influence of Experimental Imperfections on Photonic GHZ State Generation [0.0]
We investigate the influence of photon loss, multi-photon terms and photon distinguishability on the generation of photonic 3-partite GHZ states via established fusion protocols.<n>We show that different types of imperfections are dominant with respect to the fidelity and generation success probability.
arXiv Detail & Related papers (2024-06-26T11:09:23Z) - Experimental preparation of multiphoton-added coherent states of light [0.0]
Conditional addition of photons is a crucial tool for optical quantum state engineering.
We demonstrate the addition of one, two, and three photons to input coherent states with various amplitudes.
Results pave the way towards the experimental realization of complex optical quantum operations.
arXiv Detail & Related papers (2024-05-16T19:06:52Z) - Neural Network Enhanced Single-Photon Fock State Tomography [6.434126816101052]
We report the experimental implementation of single-photon quantum state tomography by directly estimating target parameters.
Our neural network enhanced quantum state tomography characterizes the photon number distribution for all possible photon number states from the balanced homodyne detectors.
Such a fast, robust, and precise quantum state tomography provides us a crucial diagnostic toolbox for the applications with single-photon Fock states and other non-Gaussisan quantum states.
arXiv Detail & Related papers (2024-05-05T04:58:18Z) - Classification of quantum states of light using random measurements
through a multimode fiber [42.5342379899288]
We present an optical scheme based on sending unknown input states through a multimode fiber.
A short multimode fiber implements effectively a random projection in the spatial domain.
A long-dispersive multimode fiber performs a spatial and spectral projection.
arXiv Detail & Related papers (2023-10-20T15:48:06Z) - Amplification of cascaded downconversion by reusing photons with a
switchable cavity [62.997667081978825]
We propose a scheme to amplify triplet production rates by using a fast switch and a delay loop.
Our proof-of-concept device increases the rate of detected photon triplets as predicted.
arXiv Detail & Related papers (2022-09-23T15:53:44Z) - Second-order correlations and purity of unheralded single photons from
spontaneous parametric down-conversion [1.7396274240172125]
Various quantum technology applications require high-purity single photons with high generation rate.
We present a revised expression to calculate second-order temporal correlation function, $g(2)$ for any fixed time window (bin)
arXiv Detail & Related papers (2022-07-14T15:09:58Z) - Two-Photon Interference of Single Photons from Dissimilar Sources [0.0]
Entanglement swapping and heralding are at the heart of many protocols for distributed quantum information.
We develop a theoretical description of pulsed two-photon interference of photons from dissimilar sources.
We study their dependence on critical system parameters such as quantum state lifetime and frequency detuning.
arXiv Detail & Related papers (2022-02-10T07:51:27Z) - Un-symmetric photon subtraction: a method for generating high photon
number states and their relevance to loss estimation at ultimate quantum
limit [0.0]
We have studied theoretical un-symmetric multi-photon subtracted twin beam state and demonstrated a method for generating states that resembles to high photon number states.
A crucial point is high non-classicality is obtained by photon subtraction when mean photons per mode of twin beam state is low.
arXiv Detail & Related papers (2021-10-03T23:28:47Z) - Two-photon resonance fluorescence of two interacting non-identical
quantum emitters [77.34726150561087]
We study a system of two interacting, non-indentical quantum emitters driven by a coherent field.
We show that the features imprinted by the two-photon dynamics into the spectrum of resonance fluorescence are particularly sensitive to changes in the distance between emitters.
This can be exploited for applications such as superresolution imaging of point-like sources.
arXiv Detail & Related papers (2021-06-04T16:13:01Z) - Conditional preparation of non-Gaussian quantum optical states by
mesoscopic measurement [62.997667081978825]
Non-Gaussian states of an optical field are important as a proposed resource in quantum information applications.
We propose a novel approach involving displacement of the ancilla field into the regime where mesoscopic detectors can be used.
We conclude that states with strong Wigner negativity can be prepared at high rates by this technique under experimentally attainable conditions.
arXiv Detail & Related papers (2021-03-29T16:59:18Z) - A bright and fast source of coherent single photons [46.25143811066789]
A single photon source is a key enabling technology in device-independent quantum communication.
We report a single photon source with an especially high system efficiency.
arXiv Detail & Related papers (2020-07-24T17:08:46Z) - Near-ideal spontaneous photon sources in silicon quantum photonics [55.41644538483948]
Integrated photonics is a robust platform for quantum information processing.
Sources of single photons that are highly indistinguishable and pure, that are either near-deterministic or heralded with high efficiency, have been elusive.
Here, we demonstrate on-chip photon sources that simultaneously meet each of these requirements.
arXiv Detail & Related papers (2020-05-19T16:46:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.