論文の概要: Object-Centric Image to Video Generation with Language Guidance
- arxiv url: http://arxiv.org/abs/2502.11655v1
- Date: Mon, 17 Feb 2025 10:46:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-18 14:10:41.153583
- Title: Object-Centric Image to Video Generation with Language Guidance
- Title(参考訳): 言語指導によるオブジェクト中心画像から映像生成
- Authors: Angel Villar-Corrales, Gjergj Plepi, Sven Behnke,
- Abstract要約: TextOCVPは、テキスト記述によってガイドされる画像からビデオ生成のためのオブジェクト中心モデルである。
提案手法は,テキストガイダンスを取り入れたオブジェクトのダイナミクスとインタラクションを共同でモデル化することにより,正確かつ制御可能な予測を導出する。
- 参考スコア(独自算出の注目度): 17.50161162624179
- License:
- Abstract: Accurate and flexible world models are crucial for autonomous systems to understand their environment and predict future events. Object-centric models, with structured latent spaces, have shown promise in modeling object dynamics and interactions, but often face challenges in scaling to complex datasets and incorporating external guidance, limiting their applicability in robotics. To address these limitations, we propose TextOCVP, an object-centric model for image-to-video generation guided by textual descriptions. TextOCVP parses an observed scene into object representations, called slots, and utilizes a text-conditioned transformer predictor to forecast future object states and video frames. Our approach jointly models object dynamics and interactions while incorporating textual guidance, thus leading to accurate and controllable predictions. Our method's structured latent space offers enhanced control over the prediction process, outperforming several image-to-video generative baselines. Additionally, we demonstrate that structured object-centric representations provide superior controllability and interpretability, facilitating the modeling of object dynamics and enabling more precise and understandable predictions. Videos and code are available at https://play-slot.github.io/TextOCVP/.
- Abstract(参考訳): 正確で柔軟な世界モデルは、自律的なシステムが彼らの環境を理解し、将来の出来事を予測するために不可欠である。
構造化された潜在空間を持つオブジェクト中心モデルは、オブジェクトのダイナミクスやインタラクションをモデル化する上で有望であるが、複雑なデータセットへのスケーリングや外部ガイダンスの導入といった課題に直面し、ロボット工学における適用性を制限している。
これらの制約に対処するために,テキスト記述でガイドされた画像から映像生成のためのオブジェクト中心モデルであるTextOCVPを提案する。
TextOCVPは、観察されたシーンをスロットと呼ばれるオブジェクト表現に解析し、テキスト条件付きトランスフォーマー予測器を使用して将来のオブジェクト状態とビデオフレームを予測する。
提案手法は,テキストガイダンスを取り入れたオブジェクトのダイナミクスとインタラクションを共同でモデル化することにより,正確かつ制御可能な予測を導出する。
提案手法の構造化潜在空間は,予測過程の制御性を高め,画像から映像への生成ベースラインに優れる。
さらに、構造化されたオブジェクト中心表現は、制御性と解釈性に優れ、オブジェクトダイナミクスのモデリングを容易にし、より正確で理解可能な予測を可能にすることを実証する。
ビデオとコードはhttps://play-slot.github.io/TextOCVP/.comで公開されている。
関連論文リスト
- InterDyn: Controllable Interactive Dynamics with Video Diffusion Models [50.38647583839384]
我々は、初期フレームと駆動対象またはアクターの動作を符号化する制御信号が与えられたインタラクティブな動画像を生成するフレームワークであるInterDynを提案する。
私たちの重要な洞察は、大規模ビデオデータからインタラクティブなダイナミクスを学習することで、大きなビデオファンデーションモデルがニューラルと暗黙の物理シミュレータの両方として機能できるということです。
論文 参考訳(メタデータ) (2024-12-16T13:57:02Z) - Improving Dynamic Object Interactions in Text-to-Video Generation with AI Feedback [130.090296560882]
テキスト・ビデオ・モデルにおけるオブジェクトの動的性を高めるためのフィードバックの利用について検討する。
本手法は,動的インタラクションにおける映像品質の大幅な向上を駆動するバイナリAIフィードバックを用いて,多様な報酬を効果的に最適化できることを示す。
論文 参考訳(メタデータ) (2024-12-03T17:44:23Z) - InTraGen: Trajectory-controlled Video Generation for Object Interactions [100.79494904451246]
InTraGenは、オブジェクトインタラクションシナリオのトラジェクトリベースの生成を改善するパイプラインである。
その結果,視覚的忠実度と定量的性能の両面での改善が示された。
論文 参考訳(メタデータ) (2024-11-25T14:27:50Z) - Foundational Models Defining a New Era in Vision: A Survey and Outlook [151.49434496615427]
視覚シーンの構成的性質を観察し、推論する視覚システムは、我々の世界を理解するのに不可欠である。
モデルは、このようなモダリティと大規模なトレーニングデータとのギャップを埋めることを学び、コンテキスト推論、一般化、テスト時の迅速な機能を容易にした。
このようなモデルの出力は、例えば、バウンディングボックスを設けて特定のオブジェクトをセグメント化したり、画像や映像シーンについて質問したり、言語命令でロボットの動作を操作することで対話的な対話を行うなど、リトレーニングすることなく、人為的なプロンプトによって変更することができる。
論文 参考訳(メタデータ) (2023-07-25T17:59:18Z) - Object-Centric Video Prediction via Decoupling of Object Dynamics and
Interactions [27.112210225969733]
本稿では,映像系列の構造を抽出し,オブジェクトのダイナミックスやインタラクションを視覚的観察からモデル化する,オブジェクト中心のビデオ予測タスクのための新しいフレームワークを提案する。
そこで本研究では,時間的ダイナミクスとオブジェクトの相互作用の処理を分離した2つのオブジェクト中心ビデオ予測器(OCVP)トランスフォーマモジュールを提案する。
実験では、OCVP予測器を用いたオブジェクト中心の予測フレームワークが、2つの異なるデータセットにおけるオブジェクト非依存のビデオ予測モデルより優れていることを示す。
論文 参考訳(メタデータ) (2023-02-23T08:29:26Z) - Wide and Narrow: Video Prediction from Context and Motion [54.21624227408727]
本稿では,これらの相補的属性を統合し,深層ネットワークを通した複雑なピクセルのダイナミックスを予測するフレームワークを提案する。
本研究では,非局所的な近隣表現を集約し,過去のフレーム上の文脈情報を保存するグローバルなコンテキスト伝搬ネットワークを提案する。
また,移動オブジェクトの動作をメモリに格納することで,適応的なフィルタカーネルを生成するローカルフィルタメモリネットワークを考案した。
論文 参考訳(メタデータ) (2021-10-22T04:35:58Z) - Spatio-Temporal Graph for Video Captioning with Knowledge Distillation [50.034189314258356]
空間と時間におけるオブジェクトの相互作用を利用したビデオキャプションのためのグラフモデルを提案する。
我々のモデルは解釈可能なリンクを構築し、明示的な視覚的グラウンドを提供することができる。
オブジェクト数の変動による相関を回避するため,オブジェクト認識型知識蒸留機構を提案する。
論文 参考訳(メタデータ) (2020-03-31T03:58:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。