How does ion temperature gradient turbulence depend on magnetic geometry? Insights from data and machine learning
- URL: http://arxiv.org/abs/2502.11657v1
- Date: Mon, 17 Feb 2025 10:48:26 GMT
- Title: How does ion temperature gradient turbulence depend on magnetic geometry? Insights from data and machine learning
- Authors: Matt Landreman, Jong Youl Choi, Caio Alves, Prasanna Balaprakash, R. Michael Churchill, Rory Conlin, Gareth Roberg-Clark,
- Abstract summary: Magnetic geometry has a significant effect on the level of turbulent transport in fusion plasmas.
We analyze this dependence using multiple machine learning methods and a dataset of > 200,000 nonlinear simulations.
Multiple regression models including convolutional neural networks (CNNs) and decision trees can achieve reasonable predictive power for the heat flux.
- Score: 3.5086936665880017
- License:
- Abstract: Magnetic geometry has a significant effect on the level of turbulent transport in fusion plasmas. Here, we model and analyze this dependence using multiple machine learning methods and a dataset of > 200,000 nonlinear simulations of ion-temperature-gradient turbulence in diverse non-axisymmetric geometries. The dataset is generated using a large collection of both optimized and randomly generated stellarator equilibria. At fixed gradients, the turbulent heat flux varies between geometries by several orders of magnitude. Trends are apparent among the configurations with particularly high or low heat flux. Regression and classification techniques from machine learning are then applied to extract patterns in the dataset. Due to a symmetry of the gyrokinetic equation, the heat flux and regressions thereof should be invariant to translations of the raw features in the parallel coordinate, similar to translation invariance in computer vision applications. Multiple regression models including convolutional neural networks (CNNs) and decision trees can achieve reasonable predictive power for the heat flux in held-out test configurations, with highest accuracy for the CNNs. Using Spearman correlation, sequential feature selection, and Shapley values to measure feature importance, it is consistently found that the most important geometric lever on the heat flux is the flux surface compression in regions of bad curvature. The second most important feature relates to the magnitude of geodesic curvature. These two features align remarkably with surrogates that have been proposed based on theory, while the methods here allow a natural extension to more features for increased accuracy. The dataset, released with this publication, may also be used to test other proposed surrogates, and we find many previously published proxies do correlate well with both the heat flux and stability boundary.
Related papers
- UQ of 2D Slab Burner DNS: Surrogates, Uncertainty Propagation, and Parameter Calibration [36.136619420474766]
This paper demonstrates and address challenges related to performing a complete uncertainty quantification (UQ) analysis of a complicated physics-based simulation like a 2D slab burner direct numerical simulation (DNS)
Two surrogate models, a Gaussian Process (GP) and a Hierarchical Multiscale Surrogate (HMS) were constructed using an ensemble of 64 simulations generated via Latin Hypercube sampling.
Analysis revealed that the surrogates do not accurately predict all spatial locations of the slab burner as-is.
arXiv Detail & Related papers (2024-11-09T20:56:05Z) - von Mises Quasi-Processes for Bayesian Circular Regression [57.88921637944379]
We explore a family of expressive and interpretable distributions over circle-valued random functions.
The resulting probability model has connections with continuous spin models in statistical physics.
For posterior inference, we introduce a new Stratonovich-like augmentation that lends itself to fast Markov Chain Monte Carlo sampling.
arXiv Detail & Related papers (2024-06-19T01:57:21Z) - Efficient modeling of sub-kilometer surface wind with Gaussian processes and neural networks [0.0]
Wind represents a particularly challenging variable to model due to its high spatial and temporal variability.
This paper presents a novel approach that integrates Gaussian processes and neural networks to model surface wind gusts at sub-kilometer resolution.
arXiv Detail & Related papers (2024-05-21T09:07:47Z) - Similarity Equivariant Graph Neural Networks for Homogenization of Metamaterials [3.6443770850509423]
Soft, porous mechanical metamaterials exhibit pattern transformations that may have important applications in soft robotics, sound reduction and biomedicine.
We develop a machine learning-based approach that scales favorably to serve as a surrogate model.
We show that this network is more accurate and data-efficient than graph neural networks with fewer symmetries.
arXiv Detail & Related papers (2024-04-26T12:30:32Z) - Generative convective parametrization of dry atmospheric boundary layer [0.0]
Turbulence parametrizations will remain a necessary building block in kilometer-scale Earth system models.
We present a parametrization for a dry convective boundary layer based on a generative adversarial network.
Our work paves the way to efficient data-driven convective parametrizations in other natural flows.
arXiv Detail & Related papers (2023-07-27T13:37:29Z) - Geometric Neural Diffusion Processes [55.891428654434634]
We extend the framework of diffusion models to incorporate a series of geometric priors in infinite-dimension modelling.
We show that with these conditions, the generative functional model admits the same symmetry.
arXiv Detail & Related papers (2023-07-11T16:51:38Z) - Probabilistic Unrolling: Scalable, Inverse-Free Maximum Likelihood
Estimation for Latent Gaussian Models [69.22568644711113]
We introduce probabilistic unrolling, a method that combines Monte Carlo sampling with iterative linear solvers to circumvent matrix inversions.
Our theoretical analyses reveal that unrolling and backpropagation through the iterations of the solver can accelerate gradient estimation for maximum likelihood estimation.
In experiments on simulated and real data, we demonstrate that probabilistic unrolling learns latent Gaussian models up to an order of magnitude faster than gradient EM, with minimal losses in model performance.
arXiv Detail & Related papers (2023-06-05T21:08:34Z) - VTAE: Variational Transformer Autoencoder with Manifolds Learning [144.0546653941249]
Deep generative models have demonstrated successful applications in learning non-linear data distributions through a number of latent variables.
The nonlinearity of the generator implies that the latent space shows an unsatisfactory projection of the data space, which results in poor representation learning.
We show that geodesics and accurate computation can substantially improve the performance of deep generative models.
arXiv Detail & Related papers (2023-04-03T13:13:19Z) - A physics and data co-driven surrogate modeling approach for temperature
field prediction on irregular geometric domain [12.264200001067797]
We propose a novel physics and data co-driven surrogate modeling method for temperature field prediction.
Numerical results demonstrate that our method can significantly improve accuracy prediction on a smaller dataset.
arXiv Detail & Related papers (2022-03-15T08:43:24Z) - GeoMol: Torsional Geometric Generation of Molecular 3D Conformer
Ensembles [60.12186997181117]
Prediction of a molecule's 3D conformer ensemble from the molecular graph holds a key role in areas of cheminformatics and drug discovery.
Existing generative models have several drawbacks including lack of modeling important molecular geometry elements.
We propose GeoMol, an end-to-end, non-autoregressive and SE(3)-invariant machine learning approach to generate 3D conformers.
arXiv Detail & Related papers (2021-06-08T14:17:59Z) - Predicting traffic signals on transportation networks using
spatio-temporal correlations on graphs [56.48498624951417]
This paper proposes a traffic propagation model that merges multiple heat diffusion kernels into a data-driven prediction model to forecast traffic signals.
We optimize the model parameters using Bayesian inference to minimize the prediction errors and, consequently, determine the mixing ratio of the two approaches.
The proposed model demonstrates prediction accuracy comparable to that of the state-of-the-art deep neural networks with lower computational effort.
arXiv Detail & Related papers (2021-04-27T18:17:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.