論文の概要: ReVeil: Unconstrained Concealed Backdoor Attack on Deep Neural Networks using Machine Unlearning
- arxiv url: http://arxiv.org/abs/2502.11687v1
- Date: Mon, 17 Feb 2025 11:25:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-18 14:16:24.707166
- Title: ReVeil: Unconstrained Concealed Backdoor Attack on Deep Neural Networks using Machine Unlearning
- Title(参考訳): ReVeil: マシン・アンラーニングを用いたディープニューラルネットワークにおける制約のないバックドア攻撃
- Authors: Manaar Alam, Hithem Lamri, Michail Maniatakos,
- Abstract要約: ディープニューラルネットワーク(DNN)に隠れた機能を埋め込んだバックドア攻撃
本稿では,DNNトレーニングパイプラインのデータ収集フェーズを対象とした,隠れたバックドア攻撃であるReVeilを紹介する。
- 参考スコア(独自算出の注目度): 6.464204258475263
- License:
- Abstract: Backdoor attacks embed hidden functionalities in deep neural networks (DNN), triggering malicious behavior with specific inputs. Advanced defenses monitor anomalous DNN inferences to detect such attacks. However, concealed backdoors evade detection by maintaining a low pre-deployment attack success rate (ASR) and restoring high ASR post-deployment via machine unlearning. Existing concealed backdoors are often constrained by requiring white-box or black-box access or auxiliary data, limiting their practicality when such access or data is unavailable. This paper introduces ReVeil, a concealed backdoor attack targeting the data collection phase of the DNN training pipeline, requiring no model access or auxiliary data. ReVeil maintains low pre-deployment ASR across four datasets and four trigger patterns, successfully evades three popular backdoor detection methods, and restores high ASR post-deployment through machine unlearning.
- Abstract(参考訳): バックドア攻撃はディープニューラルネットワーク(DNN)に隠された機能を埋め込み、特定の入力で悪意ある振る舞いを引き起こす。
高度な防御は、そのような攻撃を検出するためにDNNの異常な推測を監視する。
しかし、隠れたバックドアは、低いデプロイ前攻撃成功率(ASR)を維持し、マシンアンラーニングにより高いデプロイ後のASRを復元することで検出を回避している。
既存の隠されたバックドアは、ホワイトボックスやブラックボックスのアクセスや補助的なデータを必要とするため、そのようなアクセスやデータが利用できない場合にその実用性を制限することがしばしばある。
本稿では,DNNトレーニングパイプラインのデータ収集フェーズを対象とした,隠れたバックドア攻撃であるReVeilを紹介し,モデルアクセスや補助データを必要としない。
ReVeilは、4つのデータセットと4つのトリガーパターンにまたがる低い事前デプロイASRを維持し、一般的な3つのバックドア検出方法の回避に成功し、マシンアンラーニングを通じて高いASRポストデプロイを復元する。
関連論文リスト
- PCAP-Backdoor: Backdoor Poisoning Generator for Network Traffic in CPS/IoT Environments [0.6629765271909503]
我々は,PCAPデータセットに対するバックドア中毒攻撃を容易にする新技術であるtextttPCAP-Backdoorを紹介した。
実際のCPS(Cyber-Physical Systems)とIoT(Internet of Things)ネットワークトラフィックデータセットの実験では、攻撃者がトレーニングデータセット全体の1%以下を中毒することで、モデルを効果的にバックドアできることが示されている。
論文 参考訳(メタデータ) (2025-01-26T15:49:34Z) - Reconstructive Neuron Pruning for Backdoor Defense [96.21882565556072]
本稿では, バックドアニューロンの露出とプルーンの抑制を目的とした, emphReconstructive Neuron Pruning (RNP) という新しい防御法を提案する。
RNPでは、アンラーニングはニューロンレベルで行われ、リカバリはフィルタレベルで行われ、非対称再構成学習手順を形成する。
このような非対称なプロセスは、少数のクリーンサンプルだけが、広範囲の攻撃によって移植されたバックドアニューロンを効果的に露出し、刺激することができることを示す。
論文 参考訳(メタデータ) (2023-05-24T08:29:30Z) - Backdoor Attack with Sparse and Invisible Trigger [57.41876708712008]
ディープニューラルネットワーク(DNN)は、バックドア攻撃に対して脆弱である。
バックドアアタックは、訓練段階の脅威を脅かしている。
軽度で目に見えないバックドアアタック(SIBA)を提案する。
論文 参考訳(メタデータ) (2023-05-11T10:05:57Z) - Backdoor Defense via Deconfounded Representation Learning [17.28760299048368]
我々は、信頼性の高い分類のための非定型表現を学ぶために、因果性に着想を得たバックドアディフェンス(CBD)を提案する。
CBDは、良性サンプルの予測において高い精度を維持しながら、バックドアの脅威を減らすのに有効である。
論文 参考訳(メタデータ) (2023-03-13T02:25:59Z) - Backdoor Defense via Suppressing Model Shortcuts [91.30995749139012]
本稿では,モデル構造の角度からバックドア機構を探索する。
攻撃成功率 (ASR) は, キースキップ接続の出力を減少させると著しく低下することを示した。
論文 参考訳(メタデータ) (2022-11-02T15:39:19Z) - An anomaly detection approach for backdoored neural networks: face
recognition as a case study [77.92020418343022]
本稿では,異常検出の原理に基づく新しいバックドアネットワーク検出手法を提案する。
バックドアネットワークの新たなデータセット上で本手法を検証し,完全スコアで検出可能性について報告する。
論文 参考訳(メタデータ) (2022-08-22T12:14:13Z) - AEVA: Black-box Backdoor Detection Using Adversarial Extreme Value
Analysis [23.184335982913325]
ブラックボックスのハードラベルバックドア検出問題に対処する。
本研究では, バックドア検出の目的は, 逆方向の目的によって拘束されていることを示す。
ブラックボックスニューラルネットワークのバックドア検出のための対向的極値解析を提案する。
論文 参考訳(メタデータ) (2021-10-28T04:36:48Z) - Sleeper Agent: Scalable Hidden Trigger Backdoors for Neural Networks
Trained from Scratch [99.90716010490625]
バックドア攻撃者は、トレーニングデータを改ざんして、そのデータに基づいてトレーニングされたモデルに脆弱性を埋め込む。
この脆弱性は、モデル入力に"トリガー"を配置することで、推論時にアクティベートされる。
我々は,工芸過程において,勾配マッチング,データ選択,ターゲットモデル再トレーニングを利用した新しい隠れトリガ攻撃,Sleeper Agentを開発した。
論文 参考訳(メタデータ) (2021-06-16T17:09:55Z) - Black-box Detection of Backdoor Attacks with Limited Information and
Data [56.0735480850555]
モデルへのクエリアクセスのみを用いてバックドア攻撃を同定するブラックボックスバックドア検出(B3D)手法を提案する。
バックドア検出に加えて,同定されたバックドアモデルを用いた信頼性の高い予測手法を提案する。
論文 参考訳(メタデータ) (2021-03-24T12:06:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。