Proactive Depot Discovery: A Generative Framework for Flexible Location-Routing
- URL: http://arxiv.org/abs/2502.11715v1
- Date: Mon, 17 Feb 2025 12:00:28 GMT
- Title: Proactive Depot Discovery: A Generative Framework for Flexible Location-Routing
- Authors: Site Qu, Guoqiang Hu,
- Abstract summary: We propose a data-driven generative DRL framework, designed to proactively generate depots for Location-Routing Problem (LRP)
Our framework can proactively generate depots that lead to superior solution routes with lower routing cost.
The implications of our framework potentially extend into real-world applications, particularly in emergency medical rescue and disaster relief logistics.
- Score: 4.48890356952206
- License:
- Abstract: The Location-Routing Problem (LRP), which combines the challenges of facility (depot) locating and vehicle route planning, is critically constrained by the reliance on predefined depot candidates, limiting the solution space and potentially leading to suboptimal outcomes. Previous research on LRP without predefined depots is scant and predominantly relies on heuristic algorithms that iteratively attempt depot placements across a planar area. Such approaches lack the ability to proactively generate depot locations that meet specific geographic requirements, revealing a notable gap in current research landscape. To bridge this gap, we propose a data-driven generative DRL framework, designed to proactively generate depots for LRP without predefined depot candidates, solely based on customer requests data which include geographic and demand information. It can operate in two distinct modes: direct generation of exact depot locations, and the creation of a multivariate Gaussian distribution for flexible depots sampling. By extracting depots' geographic pattern from customer requests data, our approach can dynamically respond to logistical needs, identifying high-quality depot locations that further reduce total routing costs compared to traditional methods. Extensive experiments demonstrate that, for a same group of customer requests, compared with those depots identified through random attempts, our framework can proactively generate depots that lead to superior solution routes with lower routing cost. The implications of our framework potentially extend into real-world applications, particularly in emergency medical rescue and disaster relief logistics, where rapid establishment and adjustment of depot locations are paramount, showcasing its potential in addressing LRP for dynamic and unpredictable environments.
Related papers
- Joint Admission Control and Resource Allocation of Virtual Network Embedding via Hierarchical Deep Reinforcement Learning [69.00997996453842]
We propose a deep Reinforcement Learning approach to learn a joint Admission Control and Resource Allocation policy for virtual network embedding.
We show that HRL-ACRA outperforms state-of-the-art baselines in terms of both the acceptance ratio and long-term average revenue.
arXiv Detail & Related papers (2024-06-25T07:42:30Z) - How Much Data are Enough? Investigating Dataset Requirements for Patch-Based Brain MRI Segmentation Tasks [74.21484375019334]
Training deep neural networks reliably requires access to large-scale datasets.
To mitigate both the time and financial costs associated with model development, a clear understanding of the amount of data required to train a satisfactory model is crucial.
This paper proposes a strategic framework for estimating the amount of annotated data required to train patch-based segmentation networks.
arXiv Detail & Related papers (2024-04-04T13:55:06Z) - A Multi-population Integrated Approach for Capacitated Location Routing [14.897794986447474]
This paper presents a multi-population integrated framework for the capacitated location-routing problem.
It includes an effective neighborhood-based local search, a feasibility-restoring procedure and a diversification-oriented mutation.
Experiments on 281 benchmark instances from the literature show that the algorithm performs remarkably well.
arXiv Detail & Related papers (2024-03-14T13:11:30Z) - Competitive Facility Location under Random Utilities and Routing
Constraints [4.9873153106566575]
We study a facility location problem within a competitive market context, where customer demand is predicted by a random utility choice model.
We introduce routing constraints that necessitate the selection of locations in a manner that guarantees the existence of a tour visiting all chosen locations.
arXiv Detail & Related papers (2024-03-07T06:56:24Z) - Adaptive Self-supervision Algorithms for Physics-informed Neural
Networks [59.822151945132525]
Physics-informed neural networks (PINNs) incorporate physical knowledge from the problem domain as a soft constraint on the loss function.
We study the impact of the location of the collocation points on the trainability of these models.
We propose a novel adaptive collocation scheme which progressively allocates more collocation points to areas where the model is making higher errors.
arXiv Detail & Related papers (2022-07-08T18:17:06Z) - Evolutionary Optimization for Proactive and Dynamic Computing Resource
Allocation in Open Radio Access Network [4.9711284100869815]
Intelligent techniques are urged to achieve automatic allocation of the computing resource in Open Radio Access Network (O-RAN)
Existing problem formulation to solve this resource allocation problem is unsuitable as it defines the capacity utility of resource in an inappropriate way.
New formulation that better describes the problem is proposed.
arXiv Detail & Related papers (2022-01-12T08:52:04Z) - On Reward-Free RL with Kernel and Neural Function Approximations:
Single-Agent MDP and Markov Game [140.19656665344917]
We study the reward-free RL problem, where an agent aims to thoroughly explore the environment without any pre-specified reward function.
We tackle this problem under the context of function approximation, leveraging powerful function approximators.
We establish the first provably efficient reward-free RL algorithm with kernel and neural function approximators.
arXiv Detail & Related papers (2021-10-19T07:26:33Z) - Off-line approximate dynamic programming for the vehicle routing problem
with stochastic customers and demands via decentralized decision-making [0.0]
This paper studies a variant of the vehicle routing problem (VRP) where both customer locations and demands are uncertain.
The objective is to maximize the served demands while fulfilling vehicle capacities and time restrictions.
We develop a Q-learning algorithm featuring state-of-the-art acceleration techniques such as Replay Memory and Double Q Network.
arXiv Detail & Related papers (2021-09-21T14:28:09Z) - Coarse to Fine: Domain Adaptive Crowd Counting via Adversarial Scoring
Network [58.05473757538834]
This paper proposes a novel adversarial scoring network (ASNet) to bridge the gap across domains from coarse to fine granularity.
Three sets of migration experiments show that the proposed methods achieve state-of-the-art counting performance.
arXiv Detail & Related papers (2021-07-27T14:47:24Z) - A Multi-Agent System for Solving the Dynamic Capacitated Vehicle Routing
Problem with Stochastic Customers using Trajectory Data Mining [0.0]
E-commerce has created new challenges for logistics companies, one of which is being able to deliver products quickly and at low cost.
Our work presents a multi-agent system that uses trajectory data mining techniques to extract territorial patterns and use them in the dynamic creation of last-mile routes.
arXiv Detail & Related papers (2020-09-26T21:36:35Z) - Local Propagation in Constraint-based Neural Network [77.37829055999238]
We study a constraint-based representation of neural network architectures.
We investigate a simple optimization procedure that is well suited to fulfil the so-called architectural constraints.
arXiv Detail & Related papers (2020-02-18T16:47:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.