論文の概要: Time crystal optomechanics
- arxiv url: http://arxiv.org/abs/2502.11730v1
- Date: Mon, 17 Feb 2025 12:14:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-18 14:08:25.984272
- Title: Time crystal optomechanics
- Title(参考訳): 時間結晶光学
- Authors: J. T. Mäkinen, P. J. Heikkinen, S. Autti, V. V. Zavjalov, V. B. Eltsov,
- Abstract要約: 我々は、磁気準粒子、マグノンからなる時間結晶を、近くの液体表面の重力波モードである機械共振器に接続する。
その結果, 時間結晶の自然的コヒーレンスを最適条件で利用し, 時間結晶と凝縮物質の他の相との実験的障壁を取り除く方法が得られた。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Time crystals are an enigmatic phase of matter in which a quantum mechanical system displays repetitive, observable motion - they spontaneously break the time translation symmetry. On the other hand optomechanical systems, where mechanical and optical degrees of freedom are coupled, are well established and enable a range of applications and measurements with unparalleled precision. Here, we connect a time crystal formed of magnetic quasiparticles, magnons, to a mechanical resonator, a gravity wave mode on a nearby liquid surface, and show that their joint dynamics evolves as a cavity optomechanical system. Our results pave way for exploiting the spontaneous coherence of time crystals in an optomechanical setting and remove the experimental barrier between time crystals and other phases of condensed matter.
- Abstract(参考訳): タイムクリスタル(英: Time Crystals)は、量子力学系が繰り返し観測可能な運動を示す物質であり、自発的に時間変換対称性を破る。
一方、機械的自由度と光学的自由度が結合されたオプトメカニクス系は十分に確立されており、非並列的な精度で様々な応用と測定を可能にしている。
ここでは, 磁気準粒子, マグノン, 機械共振器, 近傍の液体表面の重力波モードと, 磁気準粒子, マグノンからなる時間結晶を接続し, それらの関節力学が空洞光学系として進化することを示す。
その結果, 時間結晶の自然的コヒーレンスを最適条件で利用し, 時間結晶と凝縮物質の他の相との実験的障壁を取り除く方法が得られた。
関連論文リスト
- Thermodynamics of coupled time crystals with an application to energy storage [0.0]
相互作用する2つの境界時間結晶の熱力学とゆらぎ挙動について検討する。
理論的導出を利用して、時間結晶の量子電池としての応用の可能性を探る。
論文 参考訳(メタデータ) (2024-11-07T16:21:26Z) - Time Crystals from single-molecule magnet arrays [0.0]
時間結晶はユニークな非平衡量子現象であり、現在の量子技術に期待できる。
ここでは、周期的に駆動される分子磁石アレイにおける離散時間結晶を理論的に予測する。
驚いたことに、時間-結晶応答周波数は個々の磁石のエネルギーレベルと相関している。
論文 参考訳(メタデータ) (2024-09-17T01:21:14Z) - Towards Timetronics with Photonic Systems [3.9750281362522237]
進行波共振器の時間次元における様々な凝縮物質相をエミュレートする多目的平均誘電率手法を提案する。
変調に必要な周波数と深さは実験的に達成可能であり、マイクロ波と光学システムを利用した結晶構造の実用的実現の研究の道を開く。
論文 参考訳(メタデータ) (2024-09-12T09:44:16Z) - A magnetic clock for a harmonic oscillator [89.99666725996975]
我々は、量子力学が時計のみによってマクロ性に関連する条件が満たされるとき、古典的な振る舞いにどのように変換されるかを研究する。
この出現する行動の記述では、時間の概念や位相空間や軌道の古典的な概念が現れる。
論文 参考訳(メタデータ) (2023-10-20T09:55:51Z) - Formation of Tesseract Time Crystals on a Quantum Computer [0.0]
フロッケ駆動は凝縮物質物理学の分野に革命をもたらした。
最近の焦点は離散時間結晶(DTC)にシフトしている
我々は,量子コンピュータ上でのDTCの利用の可能性について,理論的予測,実験的実現,および新たな可能性について検討する。
論文 参考訳(メタデータ) (2023-05-17T01:00:13Z) - Robust Hamiltonian Engineering for Interacting Qudit Systems [50.591267188664666]
我々は、強く相互作用するキューディット系のロバストな動的疎結合とハミルトン工学の定式化を開発する。
本研究では,これらの手法を,スピン-1窒素空洞中心の強相互作用・無秩序なアンサンブルで実験的に実証した。
論文 参考訳(メタデータ) (2023-05-16T19:12:41Z) - Dissipative time crystal in an atom-cavity system: Influence of trap and
competing interactions [0.0]
理想化限界を超える長寿命散逸時間結晶の持続性を示す。
本研究では, 準安定散逸時間結晶の出現と予熱プラトーの出現について述べる。
論文 参考訳(メタデータ) (2022-02-24T08:17:34Z) - Self-oscillating pump in a topological dissipative atom-cavity system [55.41644538483948]
光共振器に結合した量子ガス中を励起する創発的機構について報告する。
散逸により、空洞場はその2つの四角形の間に進化し、それぞれが異なる中心対称結晶構造に対応する。
この自己振動は、トポロジカル強結合モデルにおける電子の輸送を記述する時間周期ポテンシャルに類似する。
論文 参考訳(メタデータ) (2021-12-21T19:57:30Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
固体系において確立されたツールである時間依存性光電子分光法を低温原子量子シミュレーターに応用することを提案する。
1次元の$t-J$モデルの正確な対角化シミュレーションで、スピノンが非占有状態の効率的なバンド構造に出現し始めることを示す。
ポンプパルス後のスペクトル関数の依存性はスピノン間の集団的相互作用を明らかにする。
論文 参考訳(メタデータ) (2021-05-27T18:00:02Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
超低温物質中における空洞を介する長距離磁気相互作用と光学格子の効果について検討した。
競合シナリオを導入しながら,グローバルな相互作用がシステムの根底にある磁気特性を変化させていることが判明した。
これにより、量子情報目的のためのロバストなメカニズムの設計に向けた新しい選択肢が可能になる。
論文 参考訳(メタデータ) (2020-11-16T08:03:44Z) - Waveguide quantum optomechanics: parity-time phase transitions in
ultrastrong coupling regime [125.99533416395765]
2つの量子ビットの最も単純なセットアップは、光導波路に調和して閉じ込められ、量子光学相互作用の超強結合状態を可能にする。
系の固有の開性と強い光学的結合の組み合わせは、パリティ時(PT)対称性の出現につながる。
$mathcalPT$相転移は、最先端の導波路QEDセットアップで観測可能な長生きのサブラジアント状態を駆動する。
論文 参考訳(メタデータ) (2020-07-04T11:02:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。