論文の概要: Plant in Cupboard, Orange on Table, Book on Shelf. Benchmarking Practical Reasoning and Situation Modelling in a Text-Simulated Situated Environment
- arxiv url: http://arxiv.org/abs/2502.11733v1
- Date: Mon, 17 Feb 2025 12:20:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-18 14:12:22.998866
- Title: Plant in Cupboard, Orange on Table, Book on Shelf. Benchmarking Practical Reasoning and Situation Modelling in a Text-Simulated Situated Environment
- Title(参考訳): テキストを模擬した環境下での実践的推論と状況モデリングのベンチマーク
- Authors: Jonathan Jordan, Sherzod Hakimov, David Schlangen,
- Abstract要約: 大規模言語モデル(LLM)は、自然言語を介して対話するための'チャットボット'として有名になった。
我々は、非常に抽象的に、家庭の設定をシミュレートするシンプルなテキストベースの環境を実装した。
以上の結果から,環境の複雑さとゲーム制限が性能を損なうことが示唆された。
- 参考スコア(独自算出の注目度): 18.256529559741075
- License:
- Abstract: Large language models (LLMs) have risen to prominence as 'chatbots' for users to interact via natural language. However, their abilities to capture common-sense knowledge make them seem promising as language-based planners of situated or embodied action as well. We have implemented a simple text-based environment -- similar to others that have before been used for reinforcement-learning of agents -- that simulates, very abstractly, a household setting. We use this environment and the detailed error-tracking capabilities we implemented for targeted benchmarking of LLMs on the problem of practical reasoning: Going from goals and observations to actions. Our findings show that environmental complexity and game restrictions hamper performance, and concise action planning is demanding for current LLMs.
- Abstract(参考訳): 大規模言語モデル(LLM)は、自然言語を介して対話するための'チャットボット'として有名になった。
しかし、常識的知識を捉える能力は、位置や具体的行動の言語ベースのプランナーとしても有望であるように思われる。
エージェントの強化学習に使われたのと同じような、単純なテキストベースの環境を、非常に抽象的に、家庭の設定をシミュレートする形で実装しました。
我々は,この環境と,LLMの目標ベンチマークのために実装した詳細なエラー追跡機能を,現実的な推論の問題(目標と観測から行動への移動)に用いている。
本研究は,環境の複雑さとゲーム制限が性能を損なうことを示し,現在のLLMには簡潔な行動計画が要求されていることを示唆する。
関連論文リスト
- Language Agents Meet Causality -- Bridging LLMs and Causal World Models [50.79984529172807]
因果表現学習を大規模言語モデルと統合する枠組みを提案する。
このフレームワークは、自然言語表現に関連付けられた因果変数を持つ因果世界モデルを学ぶ。
本研究では,時間的スケールと環境の複雑さを考慮した因果推論と計画課題の枠組みを評価する。
論文 参考訳(メタデータ) (2024-10-25T18:36:37Z) - LangSuitE: Planning, Controlling and Interacting with Large Language Models in Embodied Text Environments [70.91258869156353]
テキストエンボディの世界における6つの代表的具体的タスクを特徴とする多目的・シミュレーション不要なテストベッドであるLangSuitEを紹介する。
以前のLLMベースのテストベッドと比較すると、LangSuitEは複数のシミュレーションエンジンを使わずに、多様な環境への適応性を提供する。
具体化された状態の履歴情報を要約した新しいチェーン・オブ・ソート(CoT)スキーマであるEmMemを考案する。
論文 参考訳(メタデータ) (2024-06-24T03:36:29Z) - Natural Language as Policies: Reasoning for Coordinate-Level Embodied Control with LLMs [7.746160514029531]
ロボットのタスク計画問題に対処するLLMによる実験結果を示す。
提案手法はタスクとシーンオブジェクトのテキスト記述を取得し,自然言語推論によるタスクプランニングを定式化する。
提案手法はマルチモーダル・プロンプト・シミュレーション・ベンチマークを用いて評価する。
論文 参考訳(メタデータ) (2024-03-20T17:58:12Z) - Interactive Planning Using Large Language Models for Partially
Observable Robotics Tasks [54.60571399091711]
大きな言語モデル(LLM)は、オープン語彙タスクを実行するロボットエージェントを作成することで、驚くべき成果を上げている。
LLMを用いた部分的に観測可能なタスクのための対話型計画手法を提案する。
論文 参考訳(メタデータ) (2023-12-11T22:54:44Z) - Natural Language based Context Modeling and Reasoning for Ubiquitous
Computing with Large Language Models: A Tutorial [35.743576799998564]
大規模言語モデル(LLM)は、コンテキスト対応コンピューティングを導入してから20年が経ち、2018年以来、驚くほど急増している。
本チュートリアルでは,テキスト,プロンプト,自律エージェント(AutoAgents)の使用を実演し,LLMが文脈モデリングや推論を行うことを可能にする。
論文 参考訳(メタデータ) (2023-09-24T00:15:39Z) - A Picture is Worth a Thousand Words: Language Models Plan from Pixels [53.85753597586226]
計画は, 実環境下で長時間の作業を行う人工エージェントの重要な機能である。
本研究では,事前学習型言語モデル(PLM)を用いて,具体的視覚環境におけるテキスト命令からのプランシーケンスを推論する。
論文 参考訳(メタデータ) (2023-03-16T02:02:18Z) - Inner Monologue: Embodied Reasoning through Planning with Language
Models [81.07216635735571]
大規模言語モデル(LLM)は自然言語処理以外の領域に適用できる。
具体化された環境でのLLMの計画には、何をすべきかだけでなく、どのように、いつ行うべきかを考える必要がある。
環境フィードバックを活用することで、LLMはロボット制御シナリオにおいてよりリッチな処理と計画を行うことができる内部モノローグを形成することができる。
論文 参考訳(メタデータ) (2022-07-12T15:20:48Z) - Language Models as Zero-Shot Planners: Extracting Actionable Knowledge
for Embodied Agents [111.33545170562337]
自然言語で表現された高レベルなタスクを、選択された実行可能なステップのセットに基底付ける可能性について検討する。
事前学習したLMが十分に大きく、適切に誘導された場合、ハイレベルなタスクを効果的に低レベルな計画に分解できることがわかった。
本稿では,既存の実演の条件を規定し,計画が許容可能な行動に意味的に変換される手順を提案する。
論文 参考訳(メタデータ) (2022-01-18T18:59:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。