論文の概要: Mitigating Visual Knowledge Forgetting in MLLM Instruction-tuning via Modality-decoupled Gradient Descent
- arxiv url: http://arxiv.org/abs/2502.11740v1
- Date: Mon, 17 Feb 2025 12:26:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-18 14:14:16.852809
- Title: Mitigating Visual Knowledge Forgetting in MLLM Instruction-tuning via Modality-decoupled Gradient Descent
- Title(参考訳): モダリティデカップリングによるMLLM教育における視覚的知識の獲得
- Authors: Junda Wu, Yuxin Xiong, Xintong Li, Yu Xia, Ruoyu Wang, Yu Wang, Tong Yu, Sungchul Kim, Ryan A. Rossi, Lina Yao, Jingbo Shang, Julian McAuley,
- Abstract要約: 近年のMLLMは、大規模マルチモーダルデータセットで事前訓練された後に、視覚的理解と推論能力の発達を見せている。
直接微調整や連続学習といった既存のアプローチでは、この問題に明示的に対処することができない。
本稿では,視覚的表現を忘れることの劣化を定量化するために,効果的なランクを活用する新しい視点を提案する。
視覚表現の効果的なランクを維持するために勾配更新を規制するMDGD法を提案する。
- 参考スコア(独自算出の注目度): 72.1517476116743
- License:
- Abstract: Recent MLLMs have shown emerging visual understanding and reasoning abilities after being pre-trained on large-scale multimodal datasets. Unlike pre-training, where MLLMs receive rich visual-text alignment, instruction-tuning is often text-driven with weaker visual supervision, leading to the degradation of pre-trained visual understanding and causing visual forgetting. Existing approaches, such as direct fine-tuning and continual learning methods, fail to explicitly address this issue, often compressing visual representations and prioritizing task alignment over visual retention, which further worsens visual forgetting. To overcome this limitation, we introduce a novel perspective leveraging effective rank to quantify the degradation of visual representation richness, interpreting this degradation through the information bottleneck principle as excessive compression that leads to the degradation of crucial pre-trained visual knowledge. Building on this view, we propose a modality-decoupled gradient descent (MDGD) method that regulates gradient updates to maintain the effective rank of visual representations while mitigating the over-compression effects described by the information bottleneck. By explicitly disentangling the optimization of visual understanding from task-specific alignment, MDGD preserves pre-trained visual knowledge while enabling efficient task adaptation. To enable lightweight instruction-tuning, we further develop a memory-efficient fine-tuning approach using gradient masking, which selectively updates a subset of model parameters to enable parameter-efficient fine-tuning (PEFT), reducing computational overhead while preserving rich visual representations. Extensive experiments across various downstream tasks and backbone MLLMs demonstrate that MDGD effectively mitigates visual forgetting from pre-trained tasks while enabling strong adaptation to new tasks.
- Abstract(参考訳): 近年のMLLMは、大規模マルチモーダルデータセットで事前学習した後に、視覚的理解と推論能力の発達を見せている。
MLLMがリッチな視覚テキストアライメントを受ける事前学習とは異なり、インストラクションチューニングはしばしばテキスト駆動であり、より弱い視覚監督によって、事前学習された視覚理解が低下し、視覚的忘れを引き起こす。
直接微調整や連続学習といった既存のアプローチでは、視覚表現を圧縮したり、視覚的保持よりもタスクアライメントを優先したりすることで、視覚的忘れをさらに悪化させる。
この制限を克服するために、視覚表現の豊かさの劣化を定量化するために効果的なランクを利用する新しい視点を導入し、この劣化を情報ボトルネック原理を通して過度な圧縮として解釈し、重要な事前学習された視覚知識の劣化につながる。
この観点から,情報ボトルネックによって記述される過圧縮効果を軽減しつつ,勾配更新を規制し,視覚表現の効果的なランクを維持するためのMDGD法を提案する。
MDGDは、タスク固有のアライメントから視覚的理解の最適化を明示的に切り離すことで、学習済みの視覚的知識を保ちながら、効率的なタスク適応を可能にする。
より軽量な命令チューニングを実現するために,モデルパラメータのサブセットを選択的に更新し,パラメータ効率のよい微調整(PEFT)を実現し,リッチな視覚表現を保ちながら計算オーバーヘッドを低減する,勾配マスキングを用いたメモリ効率の高い微調整手法を開発した。
様々な下流タスクとバックボーンMLLMにわたる大規模な実験により、MDGDは、トレーニング済みタスクからの視覚的忘れを効果的に軽減し、新しいタスクへの強力な適応を可能にすることを示した。
関連論文リスト
- Fully Fine-tuned CLIP Models are Efficient Few-Shot Learners [8.707819647492467]
視覚言語モデル全体(VLM)の精巧な精細化によるタスク固有情報の取得について検討する。
これらの問題を緩和するために,識別的視覚テキストタスクを設計するCLIP-CITEというフレームワークを提案する。
論文 参考訳(メタデータ) (2024-07-04T15:22:54Z) - Debiasing Multimodal Large Language Models [61.6896704217147]
LVLM(Large Vision-Language Models)は、コンピュータビジョンや自然言語処理において欠かせないツールとなっている。
本研究は,入力画像に先行するLarge Language Models (LLM) の影響を主に受け,生成したコンテンツに有意なバイアスが生じることを示す。
これらのバイアスを是正し、視覚情報に対するモデルの焦点をリダイレクトするために、我々は2つの単純で訓練のない戦略を導入する。
論文 参考訳(メタデータ) (2024-03-08T12:35:07Z) - Incorporating Visual Experts to Resolve the Information Loss in
Multimodal Large Language Models [121.83413400686139]
本稿では,MLLMの視覚知覚能力を向上させるために,知識の混合強化機構を提案する。
本稿では,マルチタスクエンコーダとビジュアルツールを既存のMLLM訓練と推論パイプラインに組み込む新しい手法を提案する。
論文 参考訳(メタデータ) (2024-01-06T02:02:34Z) - PerceptionGPT: Effectively Fusing Visual Perception into LLM [31.34127196055722]
視覚入力と大言語モデル(LLM)の統合は、多モーダル機能において顕著な進歩をもたらし、視覚的大言語モデル(VLLM)がもたらされた。
本稿では,視覚的知覚能力を持つVLLMを効率よく装備するPerceptionGPTという新しいエンドツーエンドフレームワークを提案する。
本手法は,視覚出力を離散トークンとして定式化する従来の手法によるトレーニングの難しさを著しく軽減する。
論文 参考訳(メタデータ) (2023-11-11T16:59:20Z) - Sequential Action-Induced Invariant Representation for Reinforcement
Learning [1.2046159151610263]
視覚的障害を伴う高次元観察からタスク関連状態表現を正確に学習する方法は、視覚的強化学習において難しい問題である。
本稿では,逐次動作の制御信号に従うコンポーネントのみを保持するために,補助学習者によってエンコーダを最適化した逐次行動誘発不変表現(SAR)法を提案する。
論文 参考訳(メタデータ) (2023-09-22T05:31:55Z) - What Makes for Good Visual Tokenizers for Large Language Models? [26.488269091290597]
優れた視覚的トークン化を実現するための適切な事前学習手法について検討し,LLM(Large Language Models)とMLLM(Multimodal Large Language Models)について検討した。
支配的手法(DeiT, CLIP, MAE, DINO)で事前訓練した視覚トークン化剤について検討する。
GVT(Good Visual Tokenizer)を備えたMLLMは,複数スケールで強力な視覚理解能力を示す。
論文 参考訳(メタデータ) (2023-05-20T16:11:26Z) - Rethinking Visual Prompt Learning as Masked Visual Token Modeling [106.71983630652323]
マスク付き視覚トークンモデリング(VPTM)として視覚プロンプト学習を提案し、下流の視覚分類を事前訓練されたマスク付き視覚トークン予測に変換する。
VPTMは、生成前訓練された視覚モデルにおける最初の視覚的プロンプト法であり、タスク修正による事前学習と下流視覚分類の整合性を実現する。
論文 参考訳(メタデータ) (2023-03-09T02:43:10Z) - SgVA-CLIP: Semantic-guided Visual Adapting of Vision-Language Models for
Few-shot Image Classification [84.05253637260743]
本稿では,セマンティック誘導視覚適応(SgVA)と呼ばれる新しいフレームワークを提案する。
SgVAは、視覚特異的のコントラスト損失、クロスモーダルのコントラスト損失、暗黙の知識蒸留を包括的に利用することで、識別的なタスク固有の視覚特徴を生成する。
13のデータセットの最先端の結果は、適応された視覚的特徴が、クロスモーダルな特徴を補完し、少数の画像分類を改善することを実証している。
論文 参考訳(メタデータ) (2022-11-28T14:58:15Z) - Heterogeneous Contrastive Learning: Encoding Spatial Information for
Compact Visual Representations [183.03278932562438]
本稿では,エンコーディング段階に空間情報を加えることで,対照的な目的と強いデータ拡張操作の間の学習の不整合を緩和する効果的な手法を提案する。
提案手法は,視覚表現の効率を向上し,自己指導型視覚表現学習の今後の研究を刺激する鍵となるメッセージを提供する。
論文 参考訳(メタデータ) (2020-11-19T16:26:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。