Exploring Translation Mechanism of Large Language Models
- URL: http://arxiv.org/abs/2502.11806v1
- Date: Mon, 17 Feb 2025 13:50:29 GMT
- Title: Exploring Translation Mechanism of Large Language Models
- Authors: Hongbin Zhang, Kehai Chen, Xuefeng Bai, Xiucheng Li, Min Zhang,
- Abstract summary: Large language models (LLMs) have succeeded remarkably in multilingual translation tasks.
This study explores the translation mechanism of LLMs from the perspective of computational components.
- Score: 23.681179949587396
- License:
- Abstract: Large language models (LLMs) have succeeded remarkably in multilingual translation tasks. However, the inherent translation mechanisms of LLMs remain poorly understood, largely due to sophisticated architectures and vast parameter scales. In response to this issue, this study explores the translation mechanism of LLM from the perspective of computational components (e.g., attention heads and MLPs). Path patching is utilized to explore causal relationships between components, detecting those crucial for translation tasks and subsequently analyzing their behavioral patterns in human-interpretable terms. Comprehensive analysis reveals that translation is predominantly facilitated by a sparse subset of specialized attention heads (less than 5\%), which extract source language, indicator, and positional features. MLPs subsequently integrate and process these features by transiting towards English-centric latent representations. Notably, building on the above findings, targeted fine-tuning of only 64 heads achieves translation improvement comparable to full-parameter tuning while preserving general capabilities.
Related papers
- Refining Translations with LLMs: A Constraint-Aware Iterative Prompting Approach [7.5069214839655345]
Large language models (LLMs) have demonstrated remarkable proficiency in machine translation (MT)
We propose a multi-step prompt chain that enhances translation faithfulness by prioritizing key terms crucial for semantic accuracy.
Experiments using Llama and Qwen as base models on the FLORES-200 and WMT datasets demonstrate significant improvements over baselines.
arXiv Detail & Related papers (2024-11-13T05:40:24Z) - LLM-based Translation Inference with Iterative Bilingual Understanding [52.46978502902928]
We propose a novel Iterative Bilingual Understanding Translation method based on the cross-lingual capabilities of large language models (LLMs)
The cross-lingual capability of LLMs enables the generation of contextual understanding for both the source and target languages separately.
The proposed IBUT outperforms several strong comparison methods.
arXiv Detail & Related papers (2024-10-16T13:21:46Z) - TEaR: Improving LLM-based Machine Translation with Systematic Self-Refinement [26.26493253161022]
Large Language Models (LLMs) have achieved impressive results in Machine Translation (MT)
We introduce a systematic LLM-based self-refinement translation framework, named textbfTEaR.
arXiv Detail & Related papers (2024-02-26T07:58:12Z) - Lost in the Source Language: How Large Language Models Evaluate the Quality of Machine Translation [64.5862977630713]
This study investigates how Large Language Models (LLMs) leverage source and reference data in machine translation evaluation task.
We find that reference information significantly enhances the evaluation accuracy, while surprisingly, source information sometimes is counterproductive.
arXiv Detail & Related papers (2024-01-12T13:23:21Z) - SCALE: Synergized Collaboration of Asymmetric Language Translation
Engines [105.8983433641208]
We introduce a collaborative framework that connects compact Specialized Translation Models (STMs) and general-purpose Large Language Models (LLMs) as one unified translation engine.
By introducing translation from STM into the triplet in-context demonstrations, SCALE unlocks refinement and pivoting ability of LLM.
Our experiments show that SCALE significantly outperforms both few-shot LLMs (GPT-4) and specialized models (NLLB) in challenging low-resource settings.
arXiv Detail & Related papers (2023-09-29T08:46:38Z) - Towards Effective Disambiguation for Machine Translation with Large
Language Models [65.80775710657672]
We study the capabilities of large language models to translate "ambiguous sentences"
Experiments show that our methods can match or outperform state-of-the-art systems such as DeepL and NLLB in four out of five language directions.
arXiv Detail & Related papers (2023-09-20T22:22:52Z) - Exploring Human-Like Translation Strategy with Large Language Models [93.49333173279508]
Large language models (LLMs) have demonstrated impressive capabilities in general scenarios.
This work proposes the MAPS framework, which stands for Multi-Aspect Prompting and Selection.
We employ a selection mechanism based on quality estimation to filter out noisy and unhelpful knowledge.
arXiv Detail & Related papers (2023-05-06T19:03:12Z) - Multilingual Multi-Aspect Explainability Analyses on Machine Reading Comprehension Models [76.48370548802464]
This paper focuses on conducting a series of analytical experiments to examine the relations between the multi-head self-attention and the final MRC system performance.
We discover that passage-to-question and passage understanding attentions are the most important ones in the question answering process.
Through comprehensive visualizations and case studies, we also observe several general findings on the attention maps, which can be helpful to understand how these models solve the questions.
arXiv Detail & Related papers (2021-08-26T04:23:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.