Multilingual Multi-Aspect Explainability Analyses on Machine Reading Comprehension Models
- URL: http://arxiv.org/abs/2108.11574v3
- Date: Mon, 28 Oct 2024 01:17:03 GMT
- Title: Multilingual Multi-Aspect Explainability Analyses on Machine Reading Comprehension Models
- Authors: Yiming Cui, Wei-Nan Zhang, Wanxiang Che, Ting Liu, Zhigang Chen, Shijin Wang,
- Abstract summary: This paper focuses on conducting a series of analytical experiments to examine the relations between the multi-head self-attention and the final MRC system performance.
We discover that passage-to-question and passage understanding attentions are the most important ones in the question answering process.
Through comprehensive visualizations and case studies, we also observe several general findings on the attention maps, which can be helpful to understand how these models solve the questions.
- Score: 76.48370548802464
- License:
- Abstract: Achieving human-level performance on some of the Machine Reading Comprehension (MRC) datasets is no longer challenging with the help of powerful Pre-trained Language Models (PLMs). However, the internal mechanism of these artifacts remains unclear, placing an obstacle for further understanding these models. This paper focuses on conducting a series of analytical experiments to examine the relations between the multi-head self-attention and the final MRC system performance, revealing the potential explainability in PLM-based MRC models. To ensure the robustness of the analyses, we perform our experiments in a multilingual way on top of various PLMs. We discover that passage-to-question and passage understanding attentions are the most important ones in the question answering process, showing strong correlations to the final performance than other parts. Through comprehensive visualizations and case studies, we also observe several general findings on the attention maps, which can be helpful to understand how these models solve the questions.
Related papers
- Assessing Modality Bias in Video Question Answering Benchmarks with Multimodal Large Language Models [12.841405829775852]
We introduce the modality importance score (MIS) to identify bias inVidQA benchmarks and datasets.
We also propose an innovative method using state-of-the-art MLLMs to estimate the modality importance.
Our results indicate that current models do not effectively integrate information due to modality imbalance in existing datasets.
arXiv Detail & Related papers (2024-08-22T23:32:42Z) - Retrieval-Enhanced Machine Learning: Synthesis and Opportunities [60.34182805429511]
Retrieval-enhancement can be extended to a broader spectrum of machine learning (ML)
This work introduces a formal framework of this paradigm, Retrieval-Enhanced Machine Learning (REML), by synthesizing the literature in various domains in ML with consistent notations which is missing from the current literature.
The goal of this work is to equip researchers across various disciplines with a comprehensive, formally structured framework of retrieval-enhanced models, thereby fostering interdisciplinary future research.
arXiv Detail & Related papers (2024-07-17T20:01:21Z) - A Critical Assessment of Interpretable and Explainable Machine Learning for Intrusion Detection [0.0]
We study the use of overly complex and opaque ML models, unaccounted data imbalances and correlated features, inconsistent influential features across different explanation methods, and the implausible utility of explanations.
Specifically, we advise avoiding complex opaque models such as Deep Neural Networks and instead using interpretable ML models such as Decision Trees.
We find that feature-based model explanations are most often inconsistent across different settings.
arXiv Detail & Related papers (2024-07-04T15:35:42Z) - Dive into the Chasm: Probing the Gap between In- and Cross-Topic
Generalization [66.4659448305396]
This study analyzes various LMs with three probing-based experiments to shed light on the reasons behind the In- vs. Cross-Topic generalization gap.
We demonstrate, for the first time, that generalization gaps and the robustness of the embedding space vary significantly across LMs.
arXiv Detail & Related papers (2024-02-02T12:59:27Z) - A Mechanistic Interpretation of Arithmetic Reasoning in Language Models
using Causal Mediation Analysis [128.0532113800092]
We present a mechanistic interpretation of Transformer-based LMs on arithmetic questions.
This provides insights into how information related to arithmetic is processed by LMs.
arXiv Detail & Related papers (2023-05-24T11:43:47Z) - Post Hoc Explanations of Language Models Can Improve Language Models [43.2109029463221]
We present a novel framework, Amplifying Model Performance by Leveraging In-Context Learning with Post Hoc Explanations (AMPLIFY)
We leverage post hoc explanation methods which output attribution scores (explanations) capturing the influence of each of the input features on model predictions.
Our framework, AMPLIFY, leads to prediction accuracy improvements of about 10-25% over a wide range of tasks.
arXiv Detail & Related papers (2023-05-19T04:46:04Z) - Scaling Vision-Language Models with Sparse Mixture of Experts [128.0882767889029]
We show that mixture-of-experts (MoE) techniques can achieve state-of-the-art performance on a range of benchmarks over dense models of equivalent computational cost.
Our research offers valuable insights into stabilizing the training of MoE models, understanding the impact of MoE on model interpretability, and balancing the trade-offs between compute performance when scaling vision-language models.
arXiv Detail & Related papers (2023-03-13T16:00:31Z) - Investigating Fairness Disparities in Peer Review: A Language Model
Enhanced Approach [77.61131357420201]
We conduct a thorough and rigorous study on fairness disparities in peer review with the help of large language models (LMs)
We collect, assemble, and maintain a comprehensive relational database for the International Conference on Learning Representations (ICLR) conference from 2017 to date.
We postulate and study fairness disparities on multiple protective attributes of interest, including author gender, geography, author, and institutional prestige.
arXiv Detail & Related papers (2022-11-07T16:19:42Z) - REPT: Bridging Language Models and Machine Reading Comprehensionvia
Retrieval-Based Pre-training [45.21249008835556]
We present REPT, a REtrieval-based Pre-Training approach to bridge the gap between general PLMs and MRC.
In particular, we introduce two self-supervised tasks to strengthen evidence extraction during pre-training.
Our approach is able to enhance the capacity of evidence extraction without explicit supervision.
arXiv Detail & Related papers (2021-05-10T08:54:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.