論文の概要: IMTS-Mixer: Mixer-Networks for Irregular Multivariate Time Series Forecasting
- arxiv url: http://arxiv.org/abs/2502.11816v1
- Date: Mon, 17 Feb 2025 14:06:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-18 14:09:41.465757
- Title: IMTS-Mixer: Mixer-Networks for Irregular Multivariate Time Series Forecasting
- Title(参考訳): IMTS-Mixer:不規則な多変量時系列予測のためのMixer-Networks
- Authors: Christian Klötergens, Tim Dernedde, Lars Schmidt-Thieme,
- Abstract要約: IMTS専用に設計された新しい予測アーキテクチャであるIMTS-Mixerを紹介する。
提案手法は,IMTSを固定サイズ行列表現に変換する革新的な手法を導入しながら,TSミキサーモデルの中核となる原理を保っている。
この結果から,IMTS-Mixerは予測精度を向上し,計算効率も向上することを示す。
- 参考スコア(独自算出の注目度): 5.854515369288696
- License:
- Abstract: Forecasting Irregular Multivariate Time Series (IMTS) has recently emerged as a distinct research field, necessitating specialized models to address its unique challenges. While most forecasting literature assumes regularly spaced observations without missing values, many real-world datasets - particularly in healthcare, climate research, and biomechanics - violate these assumptions. Time Series (TS)-mixer models have achieved remarkable success in regular multivariate time series forecasting. However, they remain unexplored for IMTS due to their requirement for complete and evenly spaced observations. To bridge this gap, we introduce IMTS-Mixer, a novel forecasting architecture designed specifically for IMTS. Our approach retains the core principles of TS mixer models while introducing innovative methods to transform IMTS into fixed-size matrix representations, enabling their seamless integration with mixer modules. We evaluate IMTS-Mixer on a benchmark of four real-world datasets from various domains. Our results demonstrate that IMTS-Mixer establishes a new state-of-the-art in forecasting accuracy while also improving computational efficiency.
- Abstract(参考訳): 予測不規則多変量時系列(IMTS)は、最近、独自の研究分野として現れ、その固有の課題に対処するために専門的なモデルを必要とする。
ほとんどの予測文献は、欠落した値のない定期的に空間的な観測を仮定するが、医療、気候研究、バイオメカニクスなど、多くの現実世界のデータセットはこれらの仮定に違反している。
時系列(TS)-ミキサーモデルは、通常の多変量時系列予測において顕著な成功を収めた。
しかし、完全な等間隔の観測を必要とするため、IMTSには未探索のままである。
このギャップを埋めるために、IMTS専用に設計された新しい予測アーキテクチャIMTS-Mixerを導入する。
提案手法は,TSミキサーモデルの基本原理を維持しつつ,IMTSを固定サイズ行列表現に変換する革新的な手法を導入し,ミキサーモジュールとのシームレスな統合を実現する。
我々はIMTS-Mixerを、様々な領域の4つの実世界のデータセットのベンチマークで評価した。
この結果から,IMTS-Mixerは予測精度を向上し,計算効率も向上することを示す。
関連論文リスト
- xLSTM-Mixer: Multivariate Time Series Forecasting by Mixing via Scalar Memories [20.773694998061707]
時系列データは様々な分野に分散しており、堅牢で正確な予測モデルの開発が必要である。
我々は,時間的シーケンス,共同時間可変情報,堅牢な予測のための複数の視点を効果的に統合するモデルであるxLSTM-Mixerを紹介する。
我々は,最近の最先端手法と比較して,xLSTM-Mixerの長期予測性能が優れていることを示した。
論文 参考訳(メタデータ) (2024-10-22T11:59:36Z) - UniTST: Effectively Modeling Inter-Series and Intra-Series Dependencies for Multivariate Time Series Forecasting [98.12558945781693]
フラット化されたパッチトークンに統一された注意機構を含む変圧器ベースモデルUniTSTを提案する。
提案モデルでは単純なアーキテクチャを採用しているが,時系列予測のためのいくつかのデータセットの実験で示されたような,魅力的な性能を提供する。
論文 参考訳(メタデータ) (2024-06-07T14:39:28Z) - UniTS: A Unified Multi-Task Time Series Model [31.675845788410246]
UniTSは、予測タスクと生成タスクを単一のフレームワークに統合した、統合されたマルチタスク時系列モデルである。
UniTSは、人間の活動センサー、ヘルスケア、エンジニアリング、ファイナンスにまたがる38のデータセットでテストされている。
論文 参考訳(メタデータ) (2024-02-29T21:25:58Z) - Unified Training of Universal Time Series Forecasting Transformers [104.56318980466742]
マスク型ユニバーサル時系列予測変換器(モイライ)について述べる。
Moiraiは、新たに導入された大規模オープンタイムシリーズアーカイブ(LOTSA)で訓練されており、9つのドメインで27億以上の観測が行われた。
Moiraiは、フルショットモデルと比較してゼロショットの予測器として、競争力や優れたパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-02-04T20:00:45Z) - Tiny Time Mixers (TTMs): Fast Pre-trained Models for Enhanced Zero/Few-Shot Forecasting of Multivariate Time Series [11.635608108358575]
本稿では,効率的な転送学習機能を備えたコンパクトモデルであるTiny Time Mixers (TTM)について紹介する。
TTMには、適応パッチ、多様な解像度サンプリング、およびさまざまなデータセット解像度の事前トレーニングを処理するための解像度プレフィックスチューニングなどのイノベーションが含まれている。
既存のベンチマークでは0/few-shot予測(4-40%)を上回り、計算要求を大幅に削減した。
論文 参考訳(メタデータ) (2024-01-08T15:21:21Z) - Exploring Progress in Multivariate Time Series Forecasting: Comprehensive Benchmarking and Heterogeneity Analysis [70.78170766633039]
我々は、MTS予測提案を確実かつ公平に評価する手段の必要性に対処する。
BasicTS+は、MTS予測ソリューションの公平で包括的で再現可能な比較を可能にするために設計されたベンチマークである。
リッチデータセットとともにBasicTS+を適用し,45 MTS以上の予測ソリューションの性能を評価する。
論文 参考訳(メタデータ) (2023-10-09T19:52:22Z) - Disentangling Structured Components: Towards Adaptive, Interpretable and
Scalable Time Series Forecasting [52.47493322446537]
本研究では,時空間パターンの各コンポーネントを個別にモデル化する適応的,解釈可能,スケーラブルな予測フレームワークを開発する。
SCNNは、空間時間パターンの潜在構造を算術的に特徴づける、MSSの事前定義された生成プロセスで動作する。
SCNNが3つの実世界のデータセットの最先端モデルよりも優れた性能を達成できることを示すため、大規模な実験が行われた。
論文 参考訳(メタデータ) (2023-05-22T13:39:44Z) - TSMixer: An All-MLP Architecture for Time Series Forecasting [41.178272171720316]
Time-Series Mixer (TSMixer)は、多層パーセプトロン(MLP)を積み重ねた新しいアーキテクチャである。
一般的な学術ベンチマークでは、シンプルな実装TSMixerは専門的な最先端モデルに匹敵する。
我々は、TSMixerの能力に光を流すための様々な分析を行った。
論文 参考訳(メタデータ) (2023-03-10T16:41:24Z) - MTS-Mixers: Multivariate Time Series Forecasting via Factorized Temporal
and Channel Mixing [18.058617044421293]
本稿では,時系列予測の性能に対する注意機構の寄与と欠陥について検討する。
MTS-Mixersを提案する。これは2つの分解されたモジュールを用いて時間的およびチャネル的依存関係をキャプチャする。
いくつかの実世界のデータセットによる実験結果から、MTS-Mixersは既存のTransformerベースのモデルよりも高い効率で性能を発揮することが示された。
論文 参考訳(メタデータ) (2023-02-09T08:52:49Z) - LIFE: Learning Individual Features for Multivariate Time Series
Prediction with Missing Values [71.52335136040664]
本稿では,MTS予測のための新しいパラダイムを提供する学習個人特徴(LIFE)フレームワークを提案する。
LIFEは、相関次元を補助情報として使用し、非相関次元からの干渉を欠落値で抑制することにより、予測のための信頼性の高い特徴を生成する。
3つの実世界のデータセットの実験は、既存の最先端モデルに対するLIFEの優位性を検証する。
論文 参考訳(メタデータ) (2021-09-30T04:53:24Z) - A Generative Learning Approach for Spatio-temporal Modeling in Connected
Vehicular Network [55.852401381113786]
本稿では,コネクテッドカーの無線アクセス遅延を実現するための総合的時間品質フレームワークであるLaMI(Latency Model Inpainting)を提案する。
LaMIはイメージインペイントと合成のアイデアを採用し、2段階の手順で欠落したレイテンシサンプルを再構築することができる。
特に、パッチ方式のアプローチを用いて各地域で収集されたサンプル間の空間的相関を初めて発見し、その後、原点および高度に相関したサンプルをバラエナオートコーダ(VAE)に供給する。
論文 参考訳(メタデータ) (2020-03-16T03:43:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。