Assessing the impacts of tradable credit schemes through agent-based simulation
- URL: http://arxiv.org/abs/2502.11822v1
- Date: Mon, 17 Feb 2025 14:15:24 GMT
- Title: Assessing the impacts of tradable credit schemes through agent-based simulation
- Authors: Renming Liu, Dimitrios Argyros, Yu Jiang, Moshe E. Ben-Akiva, Ravi Seshadri, Carlos Lima Azevedo,
- Abstract summary: Tradable credit schemes (TCS) have been attracting interest from the transportation research community as an appealing alternative to congestion pricing.
We propose an integrated simulation framework for modeling a TCS, and implements it within the state-of-the-art open-source urban simulation platform SimMobility.
- Score: 5.512637820094679
- License:
- Abstract: Tradable credit schemes (TCS) have been attracting interest from the transportation research community as an appealing alternative to congestion pricing, due to the advantages of revenue neutrality and equity. Nonetheless, existing research has largely employed network and market equilibrium approaches with simplistic characterizations of transportation demand, supply, credit market operations, and market behavior. Agent- and activity-based simulation affords a natural means to comprehensively assess TCS by more realistically modeling demand, supply, and individual market interactions. We propose an integrated simulation framework for modeling a TCS, and implements it within the state-of-the-art open-source urban simulation platform SimMobility, including: (a) a flexible TCS design that considers multiple trips and explicitly accounts for individual trading behaviors; (b) a simulation framework that captures the complex interactions between a TCS regulator, the traveler, and the TCS market itself, with the flexibility to test future TCS designs and relevant mobility models; and (c) a set of simulation experiments on a large mesoscopic multimodal network combined with a Bayesian Optimization approach for TCS optimal design. The experiment results indicate network and market performance to stabilize over the day-to-day process, showing the alignment of our agent-based simulation with the known theoretical properties of TCS. We confirm the efficiency of TCS in reducing congestion under the adopted market behavioral assumptions and open the door for simulating different individual behaviors. We measure how TCS impacts differently the local network, heterogeneous users, the different travel behaviors, and how testing different TCS designs can avoid negative market trading behaviors.
Related papers
- TRADES: Generating Realistic Market Simulations with Diffusion Models [4.308104021015939]
Financial markets are complex systems characterized by high statistical noise, nonlinearity, and constant evolution.
We address the task of generating realistic and responsive Limit Order Book (LOB) market simulations.
We propose a novel Denoising Diffusion Probabilistic Engine for LOB Simulations (TRADES)
arXiv Detail & Related papers (2025-01-31T19:43:13Z) - Scalable Simulation-free Entropic Unbalanced Optimal Transport [3.9901365062418312]
We introduce a scalable and simulation-free approach for solving the Entropic Unbalanced Optimal Transport (EUOT) problem.
By leveraging these properties, we propose a simulation-free algorithm to solve EUOT, called Simulation-free EUOT (SF-EUOT)
arXiv Detail & Related papers (2024-10-03T16:43:00Z) - Consumer Transactions Simulation through Generative Adversarial Networks [0.07373617024876725]
This paper presents an innovative application of Generative Adversarial Networks (GANs) to generate synthetic retail transaction data.
We diverge from conventional methodologies by integrating SKU data into our GAN architecture and using more sophisticated embedding methods.
Preliminary results demonstrate enhanced realism in simulated transactions measured by comparing generated items with real ones.
arXiv Detail & Related papers (2024-08-07T09:45:24Z) - INTAGS: Interactive Agent-Guided Simulation [4.04638613278729]
In many applications involving multi-agent system (MAS), it is imperative to test an experimental (Exp) autonomous agent in a high-fidelity simulator prior to its deployment to production.
We propose a metric to distinguish between real and synthetic multi-agent systems, which is evaluated through the live interaction between the Exp and BG agents.
We show that using INTAGS to calibrate the simulator can generate more realistic market data compared to the state-of-the-art conditional Wasserstein Generative Adversarial Network approach.
arXiv Detail & Related papers (2023-09-04T19:56:18Z) - Reinforcement Learning with Human Feedback for Realistic Traffic
Simulation [53.85002640149283]
Key element of effective simulation is the incorporation of realistic traffic models that align with human knowledge.
This study identifies two main challenges: capturing the nuances of human preferences on realism and the unification of diverse traffic simulation models.
arXiv Detail & Related papers (2023-09-01T19:29:53Z) - Neural Stochastic Agent-Based Limit Order Book Simulation: A Hybrid
Methodology [6.09170287691728]
Modern financial exchanges use an electronic limit order book (LOB) to store bid and ask orders for a specific financial asset.
We propose a novel hybrid LOB simulation paradigm characterised by: (1) representing the aggregation of market events' logic by a neural background trader that is pre-trained on historical LOB data through a neural point model; and (2) embedding the background trader in a multi-agent simulation with other trading agents.
We show that the stylised facts remain and we demonstrate order flow impact and financial herding behaviours that are in accordance with empirical observations of real markets.
arXiv Detail & Related papers (2023-02-28T20:53:39Z) - A Modular Framework for Reinforcement Learning Optimal Execution [68.8204255655161]
We develop a modular framework for the application of Reinforcement Learning to the problem of Optimal Trade Execution.
The framework is designed with flexibility in mind, in order to ease the implementation of different simulation setups.
arXiv Detail & Related papers (2022-08-11T09:40:42Z) - Efficient Model-based Multi-agent Reinforcement Learning via Optimistic
Equilibrium Computation [93.52573037053449]
H-MARL (Hallucinated Multi-Agent Reinforcement Learning) learns successful equilibrium policies after a few interactions with the environment.
We demonstrate our approach experimentally on an autonomous driving simulation benchmark.
arXiv Detail & Related papers (2022-03-14T17:24:03Z) - Finding General Equilibria in Many-Agent Economic Simulations Using Deep
Reinforcement Learning [72.23843557783533]
We show that deep reinforcement learning can discover stable solutions that are epsilon-Nash equilibria for a meta-game over agent types.
Our approach is more flexible and does not need unrealistic assumptions, e.g., market clearing.
We demonstrate our approach in real-business-cycle models, a representative family of DGE models, with 100 worker-consumers, 10 firms, and a government who taxes and redistributes.
arXiv Detail & Related papers (2022-01-03T17:00:17Z) - Multi-Asset Spot and Option Market Simulation [52.77024349608834]
We construct realistic spot and equity option market simulators for a single underlying on the basis of normalizing flows.
We leverage the conditional invertibility property of normalizing flows and introduce a scalable method to calibrate the joint distribution of a set of independent simulators.
arXiv Detail & Related papers (2021-12-13T17:34:28Z) - Comparing Probability Distributions with Conditional Transport [63.11403041984197]
We propose conditional transport (CT) as a new divergence and approximate it with the amortized CT (ACT) cost.
ACT amortizes the computation of its conditional transport plans and comes with unbiased sample gradients that are straightforward to compute.
On a wide variety of benchmark datasets generative modeling, substituting the default statistical distance of an existing generative adversarial network with ACT is shown to consistently improve the performance.
arXiv Detail & Related papers (2020-12-28T05:14:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.