TRADES: Generating Realistic Market Simulations with Diffusion Models
- URL: http://arxiv.org/abs/2502.07071v2
- Date: Wed, 12 Feb 2025 12:38:13 GMT
- Title: TRADES: Generating Realistic Market Simulations with Diffusion Models
- Authors: Leonardo Berti, Bardh Prenkaj, Paola Velardi,
- Abstract summary: Financial markets are complex systems characterized by high statistical noise, nonlinearity, and constant evolution.
We address the task of generating realistic and responsive Limit Order Book (LOB) market simulations.
We propose a novel Denoising Diffusion Probabilistic Engine for LOB Simulations (TRADES)
- Score: 4.308104021015939
- License:
- Abstract: Financial markets are complex systems characterized by high statistical noise, nonlinearity, and constant evolution. Thus, modeling them is extremely hard. We address the task of generating realistic and responsive Limit Order Book (LOB) market simulations, which are fundamental for calibrating and testing trading strategies, performing market impact experiments, and generating synthetic market data. Previous works lack realism, usefulness, and responsiveness of the generated simulations. To bridge this gap, we propose a novel TRAnsformer-based Denoising Diffusion Probabilistic Engine for LOB Simulations (TRADES). TRADES generates realistic order flows conditioned on the state of the market, leveraging a transformer-based architecture that captures the temporal and spatial characteristics of high-frequency market data. There is a notable absence of quantitative metrics for evaluating generative market simulation models in the literature. To tackle this problem, we adapt the predictive score, a metric measured as an MAE, by training a stock price predictive model on synthetic data and testing it on real data. We compare TRADES with previous works on two stocks, reporting an x3.27 and x3.47 improvement over SoTA according to the predictive score, demonstrating that we generate useful synthetic market data for financial downstream tasks. We assess TRADES's market simulation realism and responsiveness, showing that it effectively learns the conditional data distribution and successfully reacts to an experimental agent, giving sprout to possible calibrations and evaluations of trading strategies and market impact experiments. We developed DeepMarket, the first open-source Python framework for market simulation with deep learning. Our repository includes a synthetic LOB dataset composed of TRADES's generates simulations. We release the code at github.com/LeonardoBerti00/DeepMarket.
Related papers
- GenSim: A General Social Simulation Platform with Large Language Model based Agents [111.00666003559324]
We propose a novel large language model (LLMs)-based simulation platform called textitGenSim.
Our platform supports one hundred thousand agents to better simulate large-scale populations in real-world contexts.
To our knowledge, GenSim represents an initial step toward a general, large-scale, and correctable social simulation platform.
arXiv Detail & Related papers (2024-10-06T05:02:23Z) - MarS: a Financial Market Simulation Engine Powered by Generative Foundation Model [37.40553007693943]
In financial markets, generative models can simulate market effects of various behaviors, enabling interaction with market scenes and players, and training strategies without financial risk.
We propose Large Market Model (LMM), an order-level generative foundation model, for financial market simulation.
Our financial Market Simulation engine (MarS), powered by LMM, addresses the need for realistic, interactive and controllable order generation.
arXiv Detail & Related papers (2024-09-04T08:16:22Z) - When AI Meets Finance (StockAgent): Large Language Model-based Stock Trading in Simulated Real-world Environments [55.19252983108372]
We have developed a multi-agent AI system called StockAgent, driven by LLMs.
The StockAgent allows users to evaluate the impact of different external factors on investor trading.
It avoids the test set leakage issue present in existing trading simulation systems based on AI Agents.
arXiv Detail & Related papers (2024-07-15T06:49:30Z) - Deep Calibration of Market Simulations using Neural Density Estimators
and Embedding Networks [3.313580633064261]
We develop a novel approach to the calibration of market simulators by leveraging recent advances in deep learning.
We demonstrate that our approach is able to correctly identify high probability parameter sets, both when applied to synthetic and historical data, and without reliance on manually selected or weighted ensembles of stylised facts.
arXiv Detail & Related papers (2023-11-20T16:44:18Z) - Waymax: An Accelerated, Data-Driven Simulator for Large-Scale Autonomous
Driving Research [76.93956925360638]
Waymax is a new data-driven simulator for autonomous driving in multi-agent scenes.
It runs entirely on hardware accelerators such as TPUs/GPUs and supports in-graph simulation for training.
We benchmark a suite of popular imitation and reinforcement learning algorithms with ablation studies on different design decisions.
arXiv Detail & Related papers (2023-10-12T20:49:15Z) - Neural Stochastic Agent-Based Limit Order Book Simulation: A Hybrid
Methodology [6.09170287691728]
Modern financial exchanges use an electronic limit order book (LOB) to store bid and ask orders for a specific financial asset.
We propose a novel hybrid LOB simulation paradigm characterised by: (1) representing the aggregation of market events' logic by a neural background trader that is pre-trained on historical LOB data through a neural point model; and (2) embedding the background trader in a multi-agent simulation with other trading agents.
We show that the stylised facts remain and we demonstrate order flow impact and financial herding behaviours that are in accordance with empirical observations of real markets.
arXiv Detail & Related papers (2023-02-28T20:53:39Z) - Learning to simulate realistic limit order book markets from data as a
World Agent [1.1470070927586016]
Multi-agent market simulators usually require careful calibration to emulate real markets.
Poorly calibrated simulators can lead to misleading conclusions.
We propose a world model simulator that accurately emulates a limit order book market.
arXiv Detail & Related papers (2022-09-26T09:17:11Z) - TRoVE: Transforming Road Scene Datasets into Photorealistic Virtual
Environments [84.6017003787244]
This work proposes a synthetic data generation pipeline to address the difficulties and domain-gaps present in simulated datasets.
We show that using annotations and visual cues from existing datasets, we can facilitate automated multi-modal data generation.
arXiv Detail & Related papers (2022-08-16T20:46:08Z) - Efficient Model-based Multi-agent Reinforcement Learning via Optimistic
Equilibrium Computation [93.52573037053449]
H-MARL (Hallucinated Multi-Agent Reinforcement Learning) learns successful equilibrium policies after a few interactions with the environment.
We demonstrate our approach experimentally on an autonomous driving simulation benchmark.
arXiv Detail & Related papers (2022-03-14T17:24:03Z) - Multi-Asset Spot and Option Market Simulation [52.77024349608834]
We construct realistic spot and equity option market simulators for a single underlying on the basis of normalizing flows.
We leverage the conditional invertibility property of normalizing flows and introduce a scalable method to calibrate the joint distribution of a set of independent simulators.
arXiv Detail & Related papers (2021-12-13T17:34:28Z) - Towards Realistic Market Simulations: a Generative Adversarial Networks
Approach [2.381990157809543]
We propose a synthetic market generator based on Conditional Generative Adversarial Networks (CGANs) trained on real aggregate-level historical data.
A CGAN-based "world" agent can generate meaningful orders in response to an experimental agent.
arXiv Detail & Related papers (2021-10-25T22:01:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.