論文の概要: Code-Vision: Evaluating Multimodal LLMs Logic Understanding and Code Generation Capabilities
- arxiv url: http://arxiv.org/abs/2502.11829v1
- Date: Mon, 17 Feb 2025 14:25:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-18 14:17:26.335295
- Title: Code-Vision: Evaluating Multimodal LLMs Logic Understanding and Code Generation Capabilities
- Title(参考訳): コードビジョン:マルチモーダルLLMの論理的理解とコード生成能力の評価
- Authors: Hanbin Wang, Xiaoxuan Zhou, Zhipeng Xu, Keyuan Cheng, Yuxin Zuo, Kai Tian, Jingwei Song, Junting Lu, Wenhui Hu, Xueyang Liu,
- Abstract要約: 本稿では,MLLM(Multimodal Large Language Models)の論理的理解とコード生成能力を評価するためのベンチマークであるCode-Visionを紹介する。
MLLMに対して、所定のフローチャートに基づいて、特定の機能要件を満たす正しいプログラムを生成するよう要求する。
実験の結果,プロプライエタリモデルとオープンソースモデルには大きな性能差があることが示されている。
- 参考スコア(独自算出の注目度): 3.196398766265106
- License:
- Abstract: This paper introduces Code-Vision, a benchmark designed to evaluate the logical understanding and code generation capabilities of Multimodal Large Language Models (MLLMs). It challenges MLLMs to generate a correct program that fulfills specific functionality requirements based on a given flowchart, which visually represents the desired algorithm or process. Code-Vision comprises three subsets: HumanEval-V, Algorithm, and MATH, which evaluate MLLMs' coding abilities across basic programming, algorithmic, and mathematical problem-solving domains. Our experiments evaluate 12 MLLMs on Code-Vision. Experimental results demonstrate that there is a large performance difference between proprietary and open-source models. On Hard problems, GPT-4o can achieve 79.3% pass@1, but the best open-source model only achieves 15%. Further experiments reveal that Code-Vision can pose unique challenges compared to other multimodal reasoning benchmarks MMCode and MathVista. We also explore the reason for the poor performance of the open-source models. All data and codes are available at https://github.com/wanghanbinpanda/CodeVision.
- Abstract(参考訳): 本稿では,MLLM(Multimodal Large Language Models)の論理的理解とコード生成能力を評価するためのベンチマークであるCode-Visionを紹介する。
MLLMは、所定のフローチャートに基づいて特定の機能要件を満たす正しいプログラムを生成するよう、MLLMに挑戦する。
Code-VisionはHumanEval-V、アルゴリズム、MATHの3つのサブセットから構成されており、基本的なプログラミング、アルゴリズム、数学的問題解決領域でMLLMのコーディング能力を評価する。
実験では,12個のMLLMをコードビジョンで評価した。
実験の結果,プロプライエタリモデルとオープンソースモデルには大きな性能差があることが示されている。
ハード問題では、GPT-4oは79.3%のpass@1を達成できるが、最高のオープンソースモデルは15%しか達成できない。
さらなる実験により、Code-Visionは他のマルチモーダル推論ベンチマークMMCodeやMathVistaと比較して、ユニークな課題が生じることが判明した。
また、オープンソースモデルの低パフォーマンスの理由についても検討する。
すべてのデータとコードはhttps://github.com/wanghanbinpanda/CodeVision.comで入手できる。
関連論文リスト
- HumanEval-V: Evaluating Visual Understanding and Reasoning Abilities of Large Multimodal Models Through Coding Tasks [25.959032350818795]
HumanEval-Vは、コード生成による大規模言語モデルの視覚的理解と推論能力を評価するために設計されたベンチマークである。
HumanEval-Vには、CodeForcesやStack Overflowといったプラットフォームから派生した、108の慎重に構築されたエントリーレベルのPythonコーディングタスクが含まれている。
我々はHumanEval-Vを用いて19の最先端LMMを評価し、重要な課題を明らかにした。
論文 参考訳(メタデータ) (2024-10-16T09:04:57Z) - Mono-InternVL: Pushing the Boundaries of Monolithic Multimodal Large Language Models with Endogenous Visual Pre-training [48.455597568212944]
マルチモーダル・ミックス・オブ・エキスパート構造を用いて視覚専門家の集合をシームレスに統合するモノリシックMLLMであるMono-InternVLを提案する。
特に、EViPは、ノイズの多いデータから高品質なデータへの視覚的知識を完全に活用することを目的とした、視覚専門家のための進歩的な学習プロセスとして設計されている。
論文 参考訳(メタデータ) (2024-10-10T17:59:22Z) - Eagle: Exploring The Design Space for Multimodal LLMs with Mixture of Encoders [89.38717274524681]
本研究では,視覚エンコーダと解像度の混合を用いたマルチモーダル大言語モデル(MLLM)の設計空間について検討する。
我々の発見は、様々な既存の戦略に共通するいくつかの基本原則を明らかにし、合理化されているが効果的な設計アプローチへと繋がる。
その結果生まれたMLLMのファミリーであるEagleは、MLLMベンチマークで他の主要なオープンソースモデルを上回っている。
論文 参考訳(メタデータ) (2024-08-28T17:59:31Z) - What's Wrong with Your Code Generated by Large Language Models? An Extensive Study [80.18342600996601]
大規模言語モデル(LLM)は、標準解に比べて短いがより複雑なコードを生成する。
3つのカテゴリと12のサブカテゴリを含む誤ったコードに対するバグの分類を開発し、一般的なバグタイプに対する根本原因を分析する。
そこで本研究では,LLMがバグタイプやコンパイラフィードバックに基づいて生成したコードを批判し,修正することのできる,自己批判を導入した新たな学習自由反復手法を提案する。
論文 参考訳(メタデータ) (2024-07-08T17:27:17Z) - Cambrian-1: A Fully Open, Vision-Centric Exploration of Multimodal LLMs [61.143381152739046]
視覚中心のアプローチで設計したマルチモーダルLLM(MLLM)のファミリーであるCambrian-1を紹介する。
本研究は,様々な視覚表現を評価するためのインタフェースとして,LLMとビジュアルインストラクションチューニングを用いた。
モデルウェイト、コード、サポートツール、データセット、詳細なインストラクションチューニングと評価のレシピを提供しています。
論文 参考訳(メタデータ) (2024-06-24T17:59:42Z) - Lumen: Unleashing Versatile Vision-Centric Capabilities of Large Multimodal Models [87.47400128150032]
本稿では,多目的視覚中心機能拡張を備えた大規模マルチモーダルモデルであるLumenという新しいLMMアーキテクチャを提案する。
ルーメンはまず、きめ細かい視覚言語の概念のアライメントを促進する。
そして、共有表現を軽量なタスクデコーダに柔軟にルーティングすることで、タスク固有のデコーダを実行する。
論文 参考訳(メタデータ) (2024-03-12T04:13:45Z) - Enhancing Large Language Models in Coding Through Multi-Perspective Self-Consistency [127.97467912117652]
大規模言語モデル(LLM)は、コード生成において顕著な能力を示した。
しかし、単一の試みで正しいソリューションを生成することは依然として課題である。
本稿では,MPSC(Multi-Perspective Self-Consistency)フレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-29T14:23:26Z) - CodeApex: A Bilingual Programming Evaluation Benchmark for Large
Language Models [43.655927559990616]
我々は,LLMのプログラミング理解,コード生成,コード修正能力に着目したベンチマークデータセットであるCodeApexを提案する。
汎用モデルと特化モデルの両方を含む,広く使用されているLLMを12種類評価した。
GPT-4は最高のプログラミング能力を示し、それぞれ69%、54%、66%の精度を達成している。
論文 参考訳(メタデータ) (2023-09-05T04:12:01Z) - LVLM-eHub: A Comprehensive Evaluation Benchmark for Large
Vision-Language Models [55.304181390027274]
本稿では,LVLM評価ハブ(LVLM-eHub)の構築により,一般公開された大規模マルチモーダルモデルの包括的評価を行う。
我々のLVLM-eHubは、InstructBLIPやMiniGPT-4などの代表的LVLMから成り、定量的能力評価とオンラインアリーナプラットフォームによって徹底的に評価されている。
この研究は、いくつかの革新的な発見を明らかにしている。まず、インストラクタBLIPのような膨大なドメイン内データを持つ命令調整型LVLMは、多くの既存のタスクを過度にオーバーフィットさせ、オープンワールドのシナリオでは一般化が不十分である。
論文 参考訳(メタデータ) (2023-06-15T16:39:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。