Text Classification in the LLM Era - Where do we stand?
- URL: http://arxiv.org/abs/2502.11830v1
- Date: Mon, 17 Feb 2025 14:25:54 GMT
- Title: Text Classification in the LLM Era - Where do we stand?
- Authors: Sowmya Vajjala, Shwetali Shimangaud,
- Abstract summary: Large Language Models revolutionized NLP and showed dramatic performance improvements across several tasks.
We investigated the role of such language models in text classification and how they compare with other approaches.
- Score: 2.7624021966289605
- License:
- Abstract: Large Language Models revolutionized NLP and showed dramatic performance improvements across several tasks. In this paper, we investigated the role of such language models in text classification and how they compare with other approaches relying on smaller pre-trained language models. Considering 32 datasets spanning 8 languages, we compared zero-shot classification, few-shot fine-tuning and synthetic data based classifiers with classifiers built using the complete human labeled dataset. Our results show that zero-shot approaches do well for sentiment classification, but are outperformed by other approaches for the rest of the tasks, and synthetic data sourced from multiple LLMs can build better classifiers than zero-shot open LLMs. We also see wide performance disparities across languages in all the classification scenarios. We expect that these findings would guide practitioners working on developing text classification systems across languages.
Related papers
- Idiosyncrasies in Large Language Models [54.26923012617675]
We unveil and study idiosyncrasies in Large Language Models (LLMs)
We find that fine-tuning existing text embedding models on LLM-generated texts yields excellent classification accuracy.
We leverage LLM as judges to generate detailed, open-ended descriptions of each model's idiosyncrasies.
arXiv Detail & Related papers (2025-02-17T18:59:02Z) - Enhancing Code Generation for Low-Resource Languages: No Silver Bullet [55.39571645315926]
Large Language Models (LLMs) rely on large and diverse datasets to learn syntax, semantics, and usage patterns of programming languages.
For low-resource languages, the limited availability of such data hampers the models' ability to generalize effectively.
We present an empirical study investigating the effectiveness of several approaches for boosting LLMs' performance on low-resource languages.
arXiv Detail & Related papers (2025-01-31T12:23:28Z) - Large Language Models For Text Classification: Case Study And Comprehensive Review [0.3428444467046467]
We evaluate the performance of different Large Language Models (LLMs) in comparison with state-of-the-art deep-learning and machine-learning models.
Our work reveals significant variations in model responses based on the prompting strategies.
arXiv Detail & Related papers (2025-01-14T22:02:38Z) - Evaluating LLM Prompts for Data Augmentation in Multi-label Classification of Ecological Texts [1.565361244756411]
Large language models (LLMs) play a crucial role in natural language processing (NLP) tasks.
This study applied prompt-based data augmentation to detect mentions of green practices in Russian social media.
arXiv Detail & Related papers (2024-11-22T12:37:41Z) - Adaptable and Reliable Text Classification using Large Language Models [7.962669028039958]
This paper introduces an adaptable and reliable text classification paradigm, which leverages Large Language Models (LLMs)
We evaluated the performance of several LLMs, machine learning algorithms, and neural network-based architectures on four diverse datasets.
It is shown that the system's performance can be further enhanced through few-shot or fine-tuning strategies.
arXiv Detail & Related papers (2024-05-17T04:05:05Z) - Language Models for Text Classification: Is In-Context Learning Enough? [54.869097980761595]
Recent foundational language models have shown state-of-the-art performance in many NLP tasks in zero- and few-shot settings.
An advantage of these models over more standard approaches is the ability to understand instructions written in natural language (prompts)
This makes them suitable for addressing text classification problems for domains with limited amounts of annotated instances.
arXiv Detail & Related papers (2024-03-26T12:47:39Z) - CoAnnotating: Uncertainty-Guided Work Allocation between Human and Large
Language Models for Data Annotation [94.59630161324013]
We propose CoAnnotating, a novel paradigm for Human-LLM co-annotation of unstructured texts at scale.
Our empirical study shows CoAnnotating to be an effective means to allocate work from results on different datasets, with up to 21% performance improvement over random baseline.
arXiv Detail & Related papers (2023-10-24T08:56:49Z) - T3L: Translate-and-Test Transfer Learning for Cross-Lingual Text
Classification [50.675552118811]
Cross-lingual text classification is typically built on large-scale, multilingual language models (LMs) pretrained on a variety of languages of interest.
We propose revisiting the classic "translate-and-test" pipeline to neatly separate the translation and classification stages.
arXiv Detail & Related papers (2023-06-08T07:33:22Z) - Beyond prompting: Making Pre-trained Language Models Better Zero-shot
Learners by Clustering Representations [24.3378487252621]
We show that zero-shot text classification can be improved simply by clustering texts in the embedding spaces of pre-trained language models.
Our approach achieves an average of 20% absolute improvement over prompt-based zero-shot learning.
arXiv Detail & Related papers (2022-10-29T16:01:51Z) - Revisiting Self-Training for Few-Shot Learning of Language Model [61.173976954360334]
Unlabeled data carry rich task-relevant information, they are proven useful for few-shot learning of language model.
In this work, we revisit the self-training technique for language model fine-tuning and present a state-of-the-art prompt-based few-shot learner, SFLM.
arXiv Detail & Related papers (2021-10-04T08:51:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.