CoAnnotating: Uncertainty-Guided Work Allocation between Human and Large
Language Models for Data Annotation
- URL: http://arxiv.org/abs/2310.15638v1
- Date: Tue, 24 Oct 2023 08:56:49 GMT
- Title: CoAnnotating: Uncertainty-Guided Work Allocation between Human and Large
Language Models for Data Annotation
- Authors: Minzhi Li, Taiwei Shi, Caleb Ziems, Min-Yen Kan, Nancy F. Chen,
Zhengyuan Liu, Diyi Yang
- Abstract summary: We propose CoAnnotating, a novel paradigm for Human-LLM co-annotation of unstructured texts at scale.
Our empirical study shows CoAnnotating to be an effective means to allocate work from results on different datasets, with up to 21% performance improvement over random baseline.
- Score: 94.59630161324013
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Annotated data plays a critical role in Natural Language Processing (NLP) in
training models and evaluating their performance. Given recent developments in
Large Language Models (LLMs), models such as ChatGPT demonstrate zero-shot
capability on many text-annotation tasks, comparable with or even exceeding
human annotators. Such LLMs can serve as alternatives for manual annotation,
due to lower costs and higher scalability. However, limited work has leveraged
LLMs as complementary annotators, nor explored how annotation work is best
allocated among humans and LLMs to achieve both quality and cost objectives. We
propose CoAnnotating, a novel paradigm for Human-LLM co-annotation of
unstructured texts at scale. Under this framework, we utilize uncertainty to
estimate LLMs' annotation capability. Our empirical study shows CoAnnotating to
be an effective means to allocate work from results on different datasets, with
up to 21% performance improvement over random baseline. For code
implementation, see https://github.com/SALT-NLP/CoAnnotating.
Related papers
- Mitigating Biases to Embrace Diversity: A Comprehensive Annotation Benchmark for Toxic Language [0.0]
This study introduces a prescriptive annotation benchmark grounded in humanities research to ensure consistent, unbiased labeling of offensive language.
We contribute two newly annotated datasets that achieve higher inter-annotator agreement between human and language model (LLM) annotations.
arXiv Detail & Related papers (2024-10-17T08:10:24Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
Large language models (LLMs) hold the promise of solving diverse tasks when provided with appropriate natural language prompts.
We propose SELF-GUIDE, a multi-stage mechanism in which we synthesize task-specific input-output pairs from the student LLM.
We report an absolute improvement of approximately 15% for classification tasks and 18% for generation tasks in the benchmark's metrics.
arXiv Detail & Related papers (2024-07-16T04:41:58Z) - Enhancing Text Classification through LLM-Driven Active Learning and Human Annotation [2.0411082897313984]
This study introduces a novel methodology that integrates human annotators and Large Language Models.
The proposed framework integrates human annotation with the output of LLMs, depending on the model uncertainty levels.
The empirical results show a substantial decrease in the costs associated with data annotation while either maintaining or improving model accuracy.
arXiv Detail & Related papers (2024-06-17T21:45:48Z) - Learning to Reduce: Optimal Representations of Structured Data in
Prompting Large Language Models [42.16047343029512]
Large Language Models (LLMs) have been widely used as general-purpose AI agents.
We propose a framework, Learning to Reduce, that fine-tunes a language model to generate a reduced version of an input context.
We show that our model achieves comparable accuracies in selecting the relevant evidence from an input context.
arXiv Detail & Related papers (2024-02-22T00:41:23Z) - Self-Play Fine-Tuning Converts Weak Language Models to Strong Language Models [52.98743860365194]
We propose a new fine-tuning method called Self-Play fIne-tuNing (SPIN)
At the heart of SPIN lies a self-play mechanism, where the LLM refines its capability by playing against instances of itself.
This sheds light on the promise of self-play, enabling the achievement of human-level performance in LLMs without the need for expert opponents.
arXiv Detail & Related papers (2024-01-02T18:53:13Z) - CLOMO: Counterfactual Logical Modification with Large Language Models [109.60793869938534]
We introduce a novel task, Counterfactual Logical Modification (CLOMO), and a high-quality human-annotated benchmark.
In this task, LLMs must adeptly alter a given argumentative text to uphold a predetermined logical relationship.
We propose an innovative evaluation metric, the Self-Evaluation Score (SES), to directly evaluate the natural language output of LLMs.
arXiv Detail & Related papers (2023-11-29T08:29:54Z) - LLMaAA: Making Large Language Models as Active Annotators [32.57011151031332]
We propose LLMaAA, which takes large language models as annotators and puts them into an active learning loop to determine what to annotate efficiently.
We conduct experiments and analysis on two classic NLP tasks, named entity recognition and relation extraction.
With LLMaAA, task-specific models trained from LLM-generated labels can outperform the teacher within only hundreds of annotated examples.
arXiv Detail & Related papers (2023-10-30T14:54:15Z) - Aligning Large Language Models with Human: A Survey [53.6014921995006]
Large Language Models (LLMs) trained on extensive textual corpora have emerged as leading solutions for a broad array of Natural Language Processing (NLP) tasks.
Despite their notable performance, these models are prone to certain limitations such as misunderstanding human instructions, generating potentially biased content, or factually incorrect information.
This survey presents a comprehensive overview of these alignment technologies, including the following aspects.
arXiv Detail & Related papers (2023-07-24T17:44:58Z) - Generation-driven Contrastive Self-training for Zero-shot Text Classification with Instruction-following LLM [31.25193238045053]
We introduce a novel method, namely GenCo, which leverages the strong generative power of large language models to assist in training a smaller language model.
In our method, an LLM plays an important role in the self-training loop of a smaller model in two important ways.
It helps crafting additional high-quality training pairs, by rewriting input texts conditioned on predicted labels.
arXiv Detail & Related papers (2023-04-24T07:35:38Z) - Benchmarking Large Language Models for News Summarization [79.37850439866938]
Large language models (LLMs) have shown promise for automatic summarization but the reasons behind their successes are poorly understood.
We find instruction tuning, and not model size, is the key to the LLM's zero-shot summarization capability.
arXiv Detail & Related papers (2023-01-31T18:46:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.