論文の概要: Revisiting Classification Taxonomy for Grammatical Errors
- arxiv url: http://arxiv.org/abs/2502.11890v1
- Date: Mon, 17 Feb 2025 15:16:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-18 14:12:15.290542
- Title: Revisiting Classification Taxonomy for Grammatical Errors
- Title(参考訳): 文法的誤りに対する分類分類の再検討
- Authors: Deqing Zou, Jingheng Ye, Yulu Liu, Yu Wu, Zishan Xu, Yinghui Li, Hai-Tao Zheng, Bingxu An, Zhao Wei, Yong Xu,
- Abstract要約: 文法的誤り分類は、言語学習システムにおいて重要な役割を果たす。
既存の分類は厳格な検証を欠くことが多く、矛盾と信頼できないフィードバックにつながります。
本稿では,系統的,定性的な評価枠組みを導入することで,文法的誤りに対する以前の分類を再考する。
- 参考スコア(独自算出の注目度): 29.551585148209895
- License:
- Abstract: Grammatical error classification plays a crucial role in language learning systems, but existing classification taxonomies often lack rigorous validation, leading to inconsistencies and unreliable feedback. In this paper, we revisit previous classification taxonomies for grammatical errors by introducing a systematic and qualitative evaluation framework. Our approach examines four aspects of a taxonomy, i.e., exclusivity, coverage, balance, and usability. Then, we construct a high-quality grammatical error classification dataset annotated with multiple classification taxonomies and evaluate them grounding on our proposed evaluation framework. Our experiments reveal the drawbacks of existing taxonomies. Our contributions aim to improve the precision and effectiveness of error analysis, providing more understandable and actionable feedback for language learners.
- Abstract(参考訳): 文法的誤り分類は言語学習システムにおいて重要な役割を担っているが、既存の分類分類学はしばしば厳密な検証を欠き、矛盾と信頼できないフィードバックをもたらす。
本稿では,系統的・定性的な評価枠組みを導入することで,文法的誤りに対する過去の分類分類を見直した。
本稿では,分類学の4つの側面,すなわち排他性,包括性,バランス,ユーザビリティについて検討する。
そこで我々は,複数の分類分類を付加した高品質な文法的誤り分類データセットを構築し,提案手法に基づく評価を行った。
我々の実験は、既存の分類学の欠点を明らかにする。
我々の貢献は、誤り解析の精度と有効性を改善し、より理解しやすく実用的なフィードバックを言語学習者に提供することを目的としている。
関連論文リスト
- Classification Error Bound for Low Bayes Error Conditions in Machine Learning [50.25063912757367]
機械学習における誤りミスマッチとKulback-Leibler分散の関係について検討する。
多くの機械学習タスクにおける低モデルに基づく分類誤差の最近の観測により、低ベイズ誤差条件に対する分類誤差の線形近似を提案する。
論文 参考訳(メタデータ) (2025-01-27T11:57:21Z) - DISCERN: Decoding Systematic Errors in Natural Language for Text Classifiers [18.279429202248632]
本稿では,テキスト分類器における系統的バイアスを言語説明を用いて解釈するフレームワークであるdisCERNを紹介する。
DISCERNは、2つの大きな言語モデル間の対話ループを用いて、体系的エラーの正確な自然言語記述を反復的に生成する。
本研究では, クラスタを例に挙げるよりも, 言語説明を通して, 系統的バイアスをより効果的に(25%以上相対的に) 効率的に解釈できることを示す。
論文 参考訳(メタデータ) (2024-10-29T17:04:55Z) - Multi-Label Requirements Classification with Large Taxonomies [40.588683959176116]
大規模ラベルによる多ラベル要求分類は、要求のトレーサビリティを補助するが、教師付きトレーニングでは違法にコストがかかる。
私たちは129の要件を,250から1183のクラスから769のラベルに関連付けました。
文ベース分類は単語ベース分類と比較して有意に高いリコール率を示した。
階層的な分類戦略は要求分類の性能を必ずしも改善しなかった。
論文 参考訳(メタデータ) (2024-06-07T09:53:55Z) - Understanding and Mitigating Classification Errors Through Interpretable
Token Patterns [58.91023283103762]
容易に解釈可能な用語でエラーを特徴付けることは、分類器が体系的なエラーを起こす傾向にあるかどうかを洞察する。
正しい予測と誤予測を区別するトークンのパターンを発見することを提案する。
提案手法であるPremiseが実際によく動作することを示す。
論文 参考訳(メタデータ) (2023-11-18T00:24:26Z) - A Saliency-based Clustering Framework for Identifying Aberrant
Predictions [49.1574468325115]
本稿では, 異常予測の概念を導入し, 分類誤差の性質が頻度と同じくらい重要であることを強調した。
本稿では,誤分類率の低減と異常予測の識別を両立する,新しい,効率的なトレーニング手法を提案する。
本手法を獣医学の分野である獣医学の分野に応用し, 被曝率は高いが, 人体医学に比べて広く研究されていない。
論文 参考訳(メタデータ) (2023-11-11T01:53:59Z) - A Visual Interpretation-Based Self-Improved Classification System Using
Virtual Adversarial Training [4.722922834127293]
本稿では,仮想対人訓練(VAT)とBERTモデルを組み合わせた視覚的解釈に基づく自己改善型分類モデルを提案する。
具体的には、テキストの感情を分類するための分類器として、微調整のBERTモデルを用いる。
予測された感情分類ラベルは、半教師付き訓練方法によるスパム分類のための別のBERTの入力の一部として使用される。
論文 参考訳(メタデータ) (2023-09-03T15:07:24Z) - TaxoKnow: Taxonomy as Prior Knowledge in the Loss Function of
Multi-class Classification [1.130757825611188]
本稿では,学習アルゴリズムの損失関数に,階層型分類を明示的正規化器として統合する2つの方法を紹介する。
階層的な分類法により、ニューラルネットワークはクラス上の出力分布を緩和し、少数クラスの上位概念を条件付けする。
論文 参考訳(メタデータ) (2023-05-24T08:08:56Z) - Resolving label uncertainty with implicit posterior models [71.62113762278963]
本稿では,データサンプルのコレクション間でラベルを共同で推論する手法を提案する。
異なる予測子を後部とする生成モデルの存在を暗黙的に仮定することにより、弱い信念の下での学習を可能にする訓練目標を導出する。
論文 参考訳(メタデータ) (2022-02-28T18:09:44Z) - Automated Speech Scoring System Under The Lens: Evaluating and
interpreting the linguistic cues for language proficiency [26.70127591966917]
従来の機械学習モデルを用いて、音声認識タスクを分類と回帰問題の両方として定式化する。
まず,5つのカテゴリー(頻度,発音,内容,文法,語彙,音響)で言語学の特徴を抽出し,応答を学習する。
比較すると,回帰に基づくモデルでは,分類法と同等かそれ以上の性能があることがわかった。
論文 参考訳(メタデータ) (2021-11-30T06:28:58Z) - A Syntax-Guided Grammatical Error Correction Model with Dependency Tree
Correction [83.14159143179269]
文法的誤り訂正(英: Grammatical Error Correction, GEC)は、文中の文法的誤りを検出し、訂正するタスクである。
本稿では,依存木の構文知識を利用するためのグラフアテンション機構を採用した構文誘導型GECモデル(SG-GEC)を提案する。
我々は、GECタスクの公開ベンチマークでモデルを評価し、競争結果を得る。
論文 参考訳(メタデータ) (2021-11-05T07:07:48Z) - Classification with Rejection Based on Cost-sensitive Classification [83.50402803131412]
学習のアンサンブルによる拒絶を用いた新しい分類法を提案する。
実験により, クリーン, ノイズ, 正の未ラベル分類における提案手法の有用性が示された。
論文 参考訳(メタデータ) (2020-10-22T14:05:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。