Neural Guided Diffusion Bridges
- URL: http://arxiv.org/abs/2502.11909v2
- Date: Tue, 18 Feb 2025 08:49:41 GMT
- Title: Neural Guided Diffusion Bridges
- Authors: Gefan Yang, Frank van der Meulen, Stefan Sommer,
- Abstract summary: We propose a novel method for simulating conditioned diffusion processes (diffusion bridges) in Euclidean spaces.
By training a neural network to approximate bridge dynamics, our approach eliminates the need for computationally intensive Markov Chain Monte Carlo (MCMC) methods.
- Score: 2.048226951354646
- License:
- Abstract: We propose a novel method for simulating conditioned diffusion processes (diffusion bridges) in Euclidean spaces. By training a neural network to approximate bridge dynamics, our approach eliminates the need for computationally intensive Markov Chain Monte Carlo (MCMC) methods or reverse-process modeling. Compared to existing methods, it offers greater robustness across various diffusion specifications and conditioning scenarios. This applies in particular to rare events and multimodal distributions, which pose challenges for score-learning- and MCMC-based approaches. We propose a flexible variational family for approximating the diffusion bridge path measure which is partially specified by a neural network. Once trained, it enables efficient independent sampling at a cost comparable to sampling the unconditioned (forward) process.
Related papers
- Switched Flow Matching: Eliminating Singularities via Switching ODEs [12.273757042838675]
Continuous-time generative models, such as Flow Matching (FM), construct probability paths to transport between one distribution and another.
During inference, however, the learned model often requires multiple neural network evaluations to accurately integrate the flow.
We propose Switched FM (SFM), that eliminates singularities via switching ODEs, as opposed to using a uniform ODE in FM.
arXiv Detail & Related papers (2024-05-19T16:21:04Z) - Improved off-policy training of diffusion samplers [93.66433483772055]
We study the problem of training diffusion models to sample from a distribution with an unnormalized density or energy function.
We benchmark several diffusion-structured inference methods, including simulation-based variational approaches and off-policy methods.
Our results shed light on the relative advantages of existing algorithms while bringing into question some claims from past work.
arXiv Detail & Related papers (2024-02-07T18:51:49Z) - Observation-Guided Diffusion Probabilistic Models [41.749374023639156]
We propose a novel diffusion-based image generation method called the observation-guided diffusion probabilistic model (OGDM)
Our approach reestablishes the training objective by integrating the guidance of the observation process with the Markov chain.
We demonstrate the effectiveness of our training algorithm using diverse inference techniques on strong diffusion model baselines.
arXiv Detail & Related papers (2023-10-06T06:29:06Z) - Distributionally Robust Model-based Reinforcement Learning with Large
State Spaces [55.14361269378122]
Three major challenges in reinforcement learning are the complex dynamical systems with large state spaces, the costly data acquisition processes, and the deviation of real-world dynamics from the training environment deployment.
We study distributionally robust Markov decision processes with continuous state spaces under the widely used Kullback-Leibler, chi-square, and total variation uncertainty sets.
We propose a model-based approach that utilizes Gaussian Processes and the maximum variance reduction algorithm to efficiently learn multi-output nominal transition dynamics.
arXiv Detail & Related papers (2023-09-05T13:42:11Z) - CamoDiffusion: Camouflaged Object Detection via Conditional Diffusion
Models [72.93652777646233]
Camouflaged Object Detection (COD) is a challenging task in computer vision due to the high similarity between camouflaged objects and their surroundings.
We propose a new paradigm that treats COD as a conditional mask-generation task leveraging diffusion models.
Our method, dubbed CamoDiffusion, employs the denoising process of diffusion models to iteratively reduce the noise of the mask.
arXiv Detail & Related papers (2023-05-29T07:49:44Z) - Diffusion Bridge Mixture Transports, Schr\"odinger Bridge Problems and
Generative Modeling [4.831663144935879]
We propose a novel sampling-based iterative algorithm, the iterated diffusion bridge mixture (IDBM) procedure, aimed at solving the dynamic Schr"odinger bridge problem.
The IDBM procedure exhibits the attractive property of realizing a valid transport between the target probability measures at each iteration.
arXiv Detail & Related papers (2023-04-03T12:13:42Z) - Q-Diffusion: Quantizing Diffusion Models [52.978047249670276]
Post-training quantization (PTQ) is considered a go-to compression method for other tasks.
We propose a novel PTQ method specifically tailored towards the unique multi-timestep pipeline and model architecture.
We show that our proposed method is able to quantize full-precision unconditional diffusion models into 4-bit while maintaining comparable performance.
arXiv Detail & Related papers (2023-02-08T19:38:59Z) - Fast Sampling of Diffusion Models via Operator Learning [74.37531458470086]
We use neural operators, an efficient method to solve the probability flow differential equations, to accelerate the sampling process of diffusion models.
Compared to other fast sampling methods that have a sequential nature, we are the first to propose a parallel decoding method.
We show our method achieves state-of-the-art FID of 3.78 for CIFAR-10 and 7.83 for ImageNet-64 in the one-model-evaluation setting.
arXiv Detail & Related papers (2022-11-24T07:30:27Z) - Deblurring via Stochastic Refinement [85.42730934561101]
We present an alternative framework for blind deblurring based on conditional diffusion models.
Our method is competitive in terms of distortion metrics such as PSNR.
arXiv Detail & Related papers (2021-12-05T04:36:09Z) - Simulating Diffusion Bridges with Score Matching [17.492131261495523]
We first show that the time-reversed diffusion bridge process can be simulated if one can time-reverse the unconditioned diffusion process.
We then consider another iteration of our proposed methodology to approximate the Doob's $h$-transform defining the diffusion bridge process.
arXiv Detail & Related papers (2021-11-14T05:18:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.