Improved off-policy training of diffusion samplers
- URL: http://arxiv.org/abs/2402.05098v4
- Date: Mon, 13 Jan 2025 09:56:11 GMT
- Title: Improved off-policy training of diffusion samplers
- Authors: Marcin Sendera, Minsu Kim, Sarthak Mittal, Pablo Lemos, Luca Scimeca, Jarrid Rector-Brooks, Alexandre Adam, Yoshua Bengio, Nikolay Malkin,
- Abstract summary: We study the problem of training diffusion models to sample from a distribution with an unnormalized density or energy function.
We benchmark several diffusion-structured inference methods, including simulation-based variational approaches and off-policy methods.
Our results shed light on the relative advantages of existing algorithms while bringing into question some claims from past work.
- Score: 93.66433483772055
- License:
- Abstract: We study the problem of training diffusion models to sample from a distribution with a given unnormalized density or energy function. We benchmark several diffusion-structured inference methods, including simulation-based variational approaches and off-policy methods (continuous generative flow networks). Our results shed light on the relative advantages of existing algorithms while bringing into question some claims from past work. We also propose a novel exploration strategy for off-policy methods, based on local search in the target space with the use of a replay buffer, and show that it improves the quality of samples on a variety of target distributions. Our code for the sampling methods and benchmarks studied is made public at https://github.com/GFNOrg/gfn-diffusion as a base for future work on diffusion models for amortized inference.
Related papers
- Scalable Discrete Diffusion Samplers: Combinatorial Optimization and Statistical Physics [7.873510219469276]
We introduce two novel training methods for discrete diffusion samplers.
These methods yield memory-efficient training and achieve state-of-the-art results in unsupervised optimization.
We introduce adaptations of SN-NIS and Neural Chain Monte Carlo that enable for the first time the application of discrete diffusion models to this problem.
arXiv Detail & Related papers (2025-02-12T18:59:55Z) - Diffusing Differentiable Representations [60.72992910766525]
We introduce a novel, training-free method for sampling differentiable representations (diffreps) using pretrained diffusion models.
We identify an implicit constraint on the samples induced by the diffrep and demonstrate that addressing this constraint significantly improves the consistency and detail of the generated objects.
arXiv Detail & Related papers (2024-12-09T20:42:58Z) - Learned Reference-based Diffusion Sampling for multi-modal distributions [2.1383136715042417]
We introduce Learned Reference-based Diffusion Sampler (LRDS), a methodology specifically designed to leverage prior knowledge on the location of the target modes.
LRDS proceeds in two steps by learning a reference diffusion model on samples located in high-density space regions.
We experimentally demonstrate that LRDS best exploits prior knowledge on the target distribution compared to competing algorithms on a variety of challenging distributions.
arXiv Detail & Related papers (2024-10-25T10:23:34Z) - Amortized Posterior Sampling with Diffusion Prior Distillation [55.03585818289934]
We propose a variational inference approach to sample from the posterior distribution for solving inverse problems.
We show that our method is applicable to standard signals in Euclidean space, as well as signals on manifold.
arXiv Detail & Related papers (2024-07-25T09:53:12Z) - Understanding Reinforcement Learning-Based Fine-Tuning of Diffusion Models: A Tutorial and Review [63.31328039424469]
This tutorial provides a comprehensive survey of methods for fine-tuning diffusion models to optimize downstream reward functions.
We explain the application of various RL algorithms, including PPO, differentiable optimization, reward-weighted MLE, value-weighted sampling, and path consistency learning.
arXiv Detail & Related papers (2024-07-18T17:35:32Z) - New algorithms for sampling and diffusion models [0.0]
We introduce a novel sampling method for known distributions and a new algorithm for diffusion generative models with unknown distributions.
Our approach is inspired by the concept of the reverse diffusion process, widely adopted in diffusion generative models.
arXiv Detail & Related papers (2024-06-14T02:30:04Z) - Consistent Diffusion Meets Tweedie: Training Exact Ambient Diffusion Models with Noisy Data [74.2507346810066]
Ambient diffusion is a recently proposed framework for training diffusion models using corrupted data.
We present the first framework for training diffusion models that provably sample from the uncorrupted distribution given only noisy training data.
arXiv Detail & Related papers (2024-03-20T14:22:12Z) - Enhancing Score-Based Sampling Methods with Ensembles [0.0]
We introduce the underlying methodology, emphasizing its relationship with generative diffusion models and the previously introduced F"ollmer sampler.
We demonstrate the efficacy of ensemble strategies through various examples, including low- to medium-dimensionality sampling problems.
Our findings highlight the potential of ensemble strategies for modeling complex probability distributions in situations where gradients are unavailable.
arXiv Detail & Related papers (2024-01-31T01:51:29Z) - Observation-Guided Diffusion Probabilistic Models [41.749374023639156]
We propose a novel diffusion-based image generation method called the observation-guided diffusion probabilistic model (OGDM)
Our approach reestablishes the training objective by integrating the guidance of the observation process with the Markov chain.
We demonstrate the effectiveness of our training algorithm using diverse inference techniques on strong diffusion model baselines.
arXiv Detail & Related papers (2023-10-06T06:29:06Z) - Score-based Source Separation with Applications to Digital Communication
Signals [72.6570125649502]
We propose a new method for separating superimposed sources using diffusion-based generative models.
Motivated by applications in radio-frequency (RF) systems, we are interested in sources with underlying discrete nature.
Our method can be viewed as a multi-source extension to the recently proposed score distillation sampling scheme.
arXiv Detail & Related papers (2023-06-26T04:12:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.